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1 Introduction

A critical factor in achieving electrification and decarbonization in the coming decades
is massive investment in expanding the power grid. Because most wind and solar farms
in the US are located far from demand centers, high-capacity transmission lines are
necessary to move this electricity over long distances. Thus, investment in transmission
lines is crucial to fully realize the benefits of renewable energy and achieve ambitious
energy policy targets.1

Inadequate transmission capacity impedes the integration of electricity from renew-
able sources and enhances the market power exerted by fossil fuel generators (Boren-
stein, Bushnell, and Stoft 2000; Joskow and Tirole 2005). The resulting welfare loss due
to market power and the forgone benefits from lower emissions can be hundreds of mil-
lions of dollars annually (Woerman 2023; Fell, Kaffine, and Novan 2021). I add to the
empirical evidence on this issue by analyzing the short-run impact of grid expansion on
price-cost markups and emissions from fossil fuel generators. The main innovation of
my approach is to provide an empirical framework to study both the market and non-
market impacts of increased transmission capacity, with the advantage of comparing the
potential benefits from both channels.

Grid expansion can also speed up the transition to green energy in the long run. Ig-
noring these effects understates the economic benefits of transmission expansion. How-
ever, any analysis to quantify this response is complicated due to endogeneity from non-
random siting of electricity transmission. I provide one of the first causal estimates on
the effect of transmission expansion on long-term investment in renewable energy. To do
so, I exploit rich spatial and temporal data from the rollout of a large-scale transmission
expansion project called Competitive Renewable Energy Zones (CREZ) in Texas.

For the short-run analysis, I write a model of optimal bidding to understand how
transmission expansion affects a fossil fuel generator’s incentives in setting markups.2

The model includes a geographically distinct renewable sector which is connected to the
demand centers and the fossil fuel sector through high capacity transmission lines. I de-
velop this model in the context of a uniform auction wherein the generator participates
by bidding on the price and quantity of electricity. I focus on the case of a marginal gen-

1. This issue has been covered widely in both energy and popular news outlets, pointing out the im-
minent necessity to build transmission lines in order to dramatically cut carbon emissions and achieve
ambitious energy goals (New York Times 2016; Temple 2017; Meyer 2021).

2. This model is most closely related to the one developed by Ryan (2021), who derives the optimal
bidding condition for a fossil fuel generator and applies it in the context of the Indian electricity market.
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erator because whose optimal bid determines the wholesale price. The corresponding
markup set by the generator is the ‘realized markup.’

My model yields insights on how transmission expansion affects realized markups.
In the short run, transmission expansion integrates wind energy into the grid, which
affects the marginal fossil fuel generator in two ways: first, by displacing the energy
production from the generator, and second, by changing the slope of its residual demand
curve. The overall impact of transmission expansion on markups is driven by the extent
to which grid expansion integrates electricity from wind and the impact of additional
wind on markups.

The above finding from the theoretical model motivates the empirical strategy for the
short-run analysis. I use a fixed effects model to estimate the empirical analogs of the
relationship between transmission expansion and markups. In the first step, I estimate
the effect of transmission expansion on hourly wind generation, followed by the impact
of wind generation on hourly markups. The empirical specifications flexibly control
for confounding factors like electricity demand and seasonality that could be correlated
with wind generation and markups. I find that the CREZ expansion led to moderate
decreases in markups, with the magnitude of reduction strongest during periods of high
wind generation. A back of the envelope analysis shows a $227 million annual reduction
in rents collected by fossil fuel generators from electricity consumers. These transfers are
policy relevant, as they can lead to lower retail prices with potential distributional and
welfare implications in the medium term.

I use the same empirical framework to study the impact of CREZ expansion on hourly
emissions across different regions of Texas. I find a decline in emissions on the order
of $123 million annually, with about 70 percent of these benefits from the decline in
carbon emissions and the remaining share from lower local SO2 and NOx emissions.
The decline in emissions is dampened by ramping up of coal generators in West Texas
and Houston as a result of wind intermittency. These ramp-up effects offset some of the
emission benefits of grid expansion in the short-run.

Next, I estimate the magnitude of long-run investment in wind generation in re-
sponse to investment in electricity transmission. The identification challenge here is that
locations with superior wind quality were selected to site CREZ lines. I use a com-
bination of matching and selection on observables to address the selection issue. I use
Coarsened Exact Matching (Iacus, King, and Porro 2012) to match the counties on a wide
range of pre-treatment observable dimensions that affected both selection into CREZ and
investment in wind energy. These factors include historical wind capacity, wind resource
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quality, land price, terrain ruggedness, ERCOT Load Zones, and county level regulation
and demographics.

Regressions using the matched sample suggest that counties with investment in grid
infrastructure saw 74 MW (+205%) higher wind capacity, 40 more turbines (+249%), and
about 29 MW (+109%) bigger wind projects over 2012 to 2019. This additional wind ca-
pacity prevented approximately $271 million in damages from carbon emissions in Texas
in 2020. These findings add empirical evidence on the long-run value of investment in
transmission expansion.

The long-run specifications include control variables that account for unobserved
characteristics of transmission line expansion that could be correlated with wind invest-
ment. These variables include matching characteristics, indicators for county-level wind
ordinances, and Production Tax Credit expiration, as well as matching groups by time
trend fixed effects. Moreover, these results are robust to a battery of tests to address
various threats to identification in the matching exercise. These tests check for selection
on unobservables, including county-level lobbying efforts for or against CREZ expan-
sion, spillovers to control counties, anticipation of CREZ announcement, spillovers due
to output prices and input prices of wind, and project extensions near the announcement
date which could influence location selection.

While transmission expansions are expensive endeavors, the benefits accrue over
time. However, my analysis indicates shorter payback periods than the ones reported
in the literature. The CREZ project cost about $6.8 billion and my estimates imply a
payback period of about 7.6 years. These estimated benefits are in conjunction with
many additional benefits, such as enhanced grid reliability, reduced transmission con-
gestion,3 and less local pollution. Therefore, these estimates are lower-bound numbers.
The findings from this paper also provide insights for grid expansion in other parts of
the US. The theoretical model and the empirical strategy can be applied to regions such
as the Midwest and the Southwest, where transmission expansion would integrate re-
newable resources into the grid and lead to reductions in both emissions and market
power associated with the fossil fuel sector.

Related Literature. This study builds on the insights from several sets of papers.
First, it adds to the extensive literature on the incidence and consequences of market
power in wholesale electricity markets. Studies focused on post-deregulation electricity
markets have found that market power contributes to high wholesale prices (Borenstein,

3. Transmission lines are said to be congested when they operate at maximum capacity. Some of the
main reasons for transmission congestion are insufficient transmission capacity and spike in demand due
to weather conditions.
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Bushnell, and Wolak 2002) and misallocation of generating resources due to sub-optimal
bidding behavior (Hortacsu and Puller 2008; Hernández 2018). The existence of market
power in sequential electricity markets causes a lack of arbitrage, which results in price
premia across markets (Saravia 2003; Borenstein et al. 2008; Ito and Reguant 2016). Sev-
eral studies have highlighted the role of financial arbitrage (Borenstein et al. 2008; Birge
et al. 2018; Mercadal 2018), vertical structures, and forward contracting in mitigating
market power (Bushnell, Mansur, and Saravia 2008).

Second, I contribute to the literature focusing on the value of transmission infrastruc-
ture in mitigating market power in electricity markets. Theoretical studies in this area
employ Cournot models and simulations to show how expansion in transmission ca-
pacity leads to more competition and mitigates the effects of market power (Borenstein,
Bushnell, and Stoft 2000; Joskow and Tirole 2000, 2005). Recent empirical literature has
looked at role of transmission constraints in exacerbating the market power exercised by
generating firms (Ryan 2021; Woerman 2023). I make theoretical and empirical contribu-
tions to this literature by developing an auction-based model of the marginal fossil fuel
generator and estimating the empirical analogs of the comparative statics of this model.

Third, I add to the recent literature looking at the link between transmission expan-
sion, wind energy, emissions, and wholesale electricity prices. This builds upon the
empirical literature in economics exploring the impact of renewable generation in low-
ering emissions in the power sector (Cullen 2013; Kaffine, McBee, and Lieskovsky 2013;
Novan 2015; Fell and Kaffine 2018). Recent papers find that CREZ led to a significant
reduction in wholesale market prices (LaRiviere and Lyu 2022), congestion risk, and the
cost of hedging (Doshi and Du 2021). Fell, Kaffine, and Novan (2021) study how CREZ
expansion enhanced the environmental value of wind measured by emissions avoided.

Finally, along with Gonzales, Ito, and Reguant (2023), I add to the evidence that
transmission expansion incenitivizes investment in renewable development. Using a
structural model, the authors show evidence of anticipatory investment in solar energy
in response to transmission line expansion in the Chilean electricity market. My anal-
ysis provides more granular evidence that locations with investment in transmission
infrastructure see significantly higher renewable investment than elsewhere.

Outline. The remainder of this paper is organized as follows. Section 2 describes the
institutional context along with the CREZ expansion project. I provide a description of
the data and some summary statistics in Section 3.3. The short-run analysis of markups
and emissions is presented in Section 3 and Section 4, respectively. Section 5 shows the
long-run analysis and Section 6 provides a concluding discussion.
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2 Institutional Details

2.1 The Texas electricity market

The Texas electricity market is one of the major deregulated electricity markets in the US.
Electric Reliability Council of Texas (ERCOT) is mandated to maintain system reliability
and manage the wholesale and retail electricity markets in Texas. ERCOT also schedules
the dispatch of generators in order to meet demand for electricity at all times. ERCOT
oversees more than 46,500 miles of electricity transmission and 700 generators serving
electricity demand from over 26 million consumers over the state of Texas. As of 2020,
natural gas represented about 51 percent of electricity generating capacity followed by
25 percent by wind and 13.4 percent by coal (ERCOT 2021). In terms of emissions, in
2019, the power sector in Texas contributed about 212.4 million metric tonnes of carbon
emissions, about 12.3 percent of the total carbon emissions from the power sector in the
US (EIA 2019). Clearly, Texas is an important context to study the behavior of fossil fuel
generators and their environmental impact.

Figure 1a shows the distribution of all the utility scale wind projects and fossil fuel
generators (≥ 10 MW) in Texas along with the five major demand centers - Houston,
Austin, Dallas, Forth Worth, and San Antonio. Most of the wind farms in Texas are
located in the wind-rich Panhandle and West, while most of the fossil fuel capacity and
major demand centers are located in the East and South. The Texas electricity market is
connected by a network of transmission lines that carried about 74,820 MW of electricity
at a record peak demand on August 12, 2019 (ERCOT 2021).4

2.2 Competitive Renewable Energy Zones

Competitive Renewable Energy Zones (CREZ) was a large-scale transmission expansion
project aimed at integrating electricity generation from wind farms located in the West
to the major demand centers in the North, South, and Houston zones (Figure 1b). The
project, commissioned in 2008 by the Public Utilities Commission of Texas, was aimed
at accommodating over 18.5 GW of electric power by building about 3,600 circuit miles
of 345 kV electricity transmission lines. However, the transmission lines are open access,
meaning that the use is not limited to wind generators (Billo 2017). These lines were built
over a period of 2011 through 2013 with a total cost of approximately $6.8 billion. All

4. To put this in perspective, this amount of electricity is equivalent to powering about 15 million Texas
homes during periods of peak demand (ERCOT 2021).
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of the CREZ-based transmission lines were placed in service by December 2013 (Lasher
2014).

Figure 1: ERCOT Zones and CREZ transmission expansion
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Note: Figure 1a shows the geographic distribution of various electricity generators in Texas. Fossil Fuel
generators include coal, natural gas, petroleum, and other gas based generators. Petroleum and other gas
based generators are only 2 percent of total generators in Texas. Red triangles mark the locations of the
five biggest population centers in Texas. Figure 1b shows the location of the CREZ transmission lines.

3 Short-run impact of CREZ expansion on markups

3.1 Transmission Constraints and Market Power

For this analysis, I focus on the real-time electricity market, which sets the expecta-
tion for prices in the day-ahead and forward markets (Potomac Economics 2019). The
main purpose of a real-time market is to match supply with demand while operating
the transmission system within established limits. Real-time operations involve the par-
ticipation of various market participants, including generators, retailers, transmission
service providers, and distributors. ERCOT manages the efficient operation of the real-
time market, including scheduling the dispatch of generators to meet the demand at all
times using a series of sequential auctions.

Electricity transmission enables the flow of electricity from the generating units to
the demand centers. Generators are scheduled to dispatch in an increasing order of
electricity generating costs. Thus, renewable generators are always scheduled to dispatch
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first, followed by fossil fuel units. Natural gas generators are typically dispatched to
meet any sudden surge in demand at peak hours.

Transmission lines operate under certain capacity limits that need to be maintained.
Inadequate transmission capacity between the West and other parts of Texas can lead
to congestion, thereby preventing the export of electricity from the wind-rich West to
demand centers in the East and South.5 The presence of transmission constraints would
cause ERCOT to schedule electricity from local generating units that are typically fossil
fuel fired fired generators. This not only results in emissions that could have been offset
by clean wind-based energy but also incentivizes local fossil fuel generators to charge
markups over their marginal cost of production.6 Transmission expansion is a key public
policy investment aimed at relieving transmission congestion and integrating renewable
generators into the grid. As I show in the theoretical model below, transmission expan-
sion affects the markup charged by fossil fuel generators.

3.2 A Model of Optimal Fossil Fuel Markups

The theoretical model in this section aims to understand the effect of transmission ex-
pansion on the pricing decision of a profit-maximizing fossil fuel generator. I borrow
elements of the merchant transmission investment model by Joskow and Tirole (2005)
and Ryan (2021), but extend these by including a renewable sector that is geographically
distinct from the demand centers and the fossil fuel sector. The renewable sector is con-
nected to the demand centers via high capacity transmission lines. In what follows, I
present the optimal markup rule for a fossil fuel generator and provide intuition on how
it is affected by the transmission expansion.

3.2.1 Model Setup

In this model, I focus on the pricing decision of a profit-maximizing fossil fuel generator
i located in region E . Generator i submits an offer curve that is a vector of supply
quantities Qi at bid prices bi, while incurring cost Ci(Qi). The optimization problem of
i entails finding the offer curve that maximizes its profit function πi(p) = p · Qi(p) −
Ci(Qi(p)), where p is the market-clearing price.

5. Transmission lines are said to be congested when they operate at maximum capacity. This is another
way of saying that transmission constraints between two points A and B are binding. Some of the reasons
for transmission congestion or binding transmission constraints are increase in demand due to weather
conditions, outages, and insufficient transmission capacity, to name a few.

6. Please refer to Appendix B for an example that illustrates this phenomenon.
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The generator faces uncertainty over the offer schedules E−i = (b−i, Q−i) from other
competitive fossil fuel generators (−i) in E .7 Generator i’s optimization problem is:

max
bi,Qi

EE−i [p · Qi(p)− Ci(Qi(p))] (1)

Market demand in E is denoted by DE and is assumed to be perfectly inelastic.
Generator i faces a downward-sloping residual demand curve Dr

i (p, qw; K) comprised
of three elements: demand for electricity DE , electricity generated from wind farms
in region W denoted by qw(K), and electricity generated from competitor fossil fuel
generators, Q−i(p, qw; K) = ∑

j ̸=i,j∈E
Qj(p, qw; K).

Regions E and W are connected by transmission lines K which enable the export
of electricity from wind farms in W . Thus, qw is a function of available transmission
capacity K. I express Q−i as a function of qw(K) because the dispatch of a fossil fuel
generator is conditional on the amount of electricity from wind.8 Thus, Dr

i (p, qw; K) is,

Dr
i (p, qw; K) = DE − qw(K)− Q−i(p, qw; K) (2)

The market clears when electricity generated by i equals residual demand, i.e., Qi(p) =
Dr

i (p, qw; K). For the ease of notation, I express qw(K) as qw. The market-clearing price p
and the supply Qi(p, qw; K) depend on the optimal bid price bi that solves the generator
i’s problem:

max
bi

EE−i [pDr
i (p, qw; K)− Ci(Dr

i (p, qw; K))]

7. For simplicity, I abstract away from any forward position generator i has. In Appendix, I consider
an extension of this model which considers the forward market. The key finding and intuition does not
change.

8. Wind-based electricity generation incurs zero marginal cost and is always scheduled to dispatch first.
I assume DE > qw which ensures that fossil fuel generators are scheduled to dispatch in order to meet
the remaining demand of D − qw units of power. Note that, Q−i(p, qw; K) is strictly increasing in p and
strictly decreasing in qw(K). The interpretation of these assumptions is as follows:

1. ∂Q−i
∂p = ∑

j ̸=i,j∈E

∂Qj
∂p > 0 : generators have greater incentives to supply electricity at higher prices.

2. ∂Q−i
∂qw

= ∑
j ̸=i,j∈E

∂Qj
∂qw

< 0 : electricity generated from wind displaces a non-zero amount of electricity

from fossil fuel generators.
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Taking a first-order condition with respect to bi and rearranging,

=⇒ EE−i

[
∂p
∂bi

(
Dr

i (p, qw; K) +
∂Dr

i (p, qw; K)
∂p

[
p − C′

i(Dr
i (p, qw; K))

])]∣∣∣∣
p=bi

= 0 (3)

∂p
∂bi

is the slope of the market-clearing bid price and is equal to one if the bid is
marginal and zero otherwise. I focus on the marginal generator, whose optimal bid bi

determines the market-clearing price. For simplicity, I assume constant marginal cost,
i.e., C′

i(Dr
i (p, qw; K)) = ci, as well as full information on other generators’ strategy. Equa-

tion (3) reduces to,

p − ci = −
Dr

i (p, qw; K)
∂Dr

i (p, qw; K)/∂p
(4)

Equation 4 shows that the ‘realized markups’ is a function of residual demand and
its slope (which is a negative quantity). The numerator measures how generator i’s
production decision affects markups. The denominator shows that with a flatter residual
demand curve, generator will find it optimal to set lower markups, whereas a steeper
residual demand curve implies higher markups.

3.2.2 Model illustration and predictions

For intuition on the model predictions, consider the hypothetical electricity dispatch
curve shown in Figure 2a. The supply side assumes four fossil fuel generators, indexed
by their offer/bid price cj(j = 4) of supplying electricity. The dispatch curve is a step
function of generators arranged in increasing order of the offer price. The dotted ver-
tical line (D) is the demand for electricity and is assumed to be fixed in the short run.
Generators are dispatched in increasing order of the offer price until the demand is met.
The generator(s) dispatched with the highest offer price is the marginal generator, which
determines the wholesale price of electricity. In this case, generator i submits the high-
est offer price c4 and is thus the marginal generator. Note that I assume the marginal
generator to remain fixed throughout this analysis.

Next, to characterize the effect of transmission line (K) expansion on markups, I per-
form a comparative statics exercise by partially differentiating Equation (4) with respect
to K. Simplifying and expressing the resulting expression as a percentage change in
markups:

9



∂(p − ci)/(p − ci)

∂K
=

[
1

Dr
i (p, qw; K)

·
∂Dr

i (p, qw; K)
∂K

]
︸ ︷︷ ︸

∆Displacement

−
[

1
∂Dr

i (p, qw; K)/∂p
·

∂2Dr
i (p, qw; K)
∂p∂K

]
︸ ︷︷ ︸

∆Slope
(5)

∆Displacement. The first term in Equation 5 shows that changes in transmission
capacity K can affect markups due to a displacement of generator i’s residual demand
curve.

∂Dr
i (p, qw; K)

∂K
=

∂Dr
i (p, qw; K)

∂qw
· ∂qw

∂K
(6)

With the stock of wind generating capacity fixed in the short run, ∂qw(K)
∂K (≥ 0) is the

amount of wind integrated into the grid due to transmission expansion. This additional
wind qw displaces electricity generated from i, shown as the hatched area in Figure 2b.
This can be summarized as:

Result 1 Integration of wind due to transmission expansion leads to a displacement of a marginal
generator’s residual demand curve.

∂Dr
i (p, qw; K)

∂qw
< 0 (7)

Thus, electricity from wind shifts the dispatch curve to the right, displacing power
by generator i. This is reflected as an inward shift of i’s residual demand curve, which in
turn reduces its ability to set higher markups. As shown in Figure 2c, with the generator
moving from point A to point B of its offer curve after wind integration. Compared to
point A, point B is associated with a flatter region of the offer curve, thereby lowering
the markups.

∆Slope. This term measures how changes in transmission capacity affect the slope
of generator i’s residual demand curve. Taking the derivative of the slope of i’s residual
demand curve with respect to K yields,9

∂2Dr
i (p, qw; K)
∂p∂K

= −∂2Q−i(p, qw; K)
∂p∂qw

· ∂qw

∂K
(8)

Equation 8 shows that heterogeneity in the cost of electricity generation could lead
to steeper or flatter electricity dispatch curves at the margin.10 For example, during
periods of low demand, the dispatch curve tends be more elastic (flatter) whereas during

9. Recall that the demand for electricity (DE ) and wind generation (qw(K)) are invariant to changes in
p, the slope of Dr

i (p, qw; K) depends only on the production decisions of other fossil fuel generators.
10. Note that the slope of electricity dispatch curve is characterised by ∂Q−i(p,qw ;K)

∂p
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Figure 2: Hypothetical electricity dispatch curves and the effect of wind generation on
marginal fossil fuel generator
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Notes: ci denotes generator i’s offer/bid price to supply electricity. The vertical dotted line in Figure 2a
and Figure 2b denotes the demand for electricity (D), which is inelastic in the short run. qw is the wind
integrated into the grid due to transmission expansion, and Si denotes the supply curve of generator i.

periods of high demand, the dispatch curve is typically inelastic (steeper). This can be
summarized as:

Result 2 The impact of transmission expansion on the slope of the marginal generator’s residual
demand curve is ambiguous.

Figure 3 illustrates this point. Figure 3a shows that a flatter dispatch curve at the
margin, results in a more elastic residual demand curve characterized by a counterclock-

wise rotation of Dr
i (p, qw). Thus, ∂2Dr

i (p,qw;K)
∂p∂K ≤ 0, thereby reducing generator i’s ability

to set higher markups. Figure 3b shows the opposite case, wherein a steeper dispatch

curve is steeper, results in a more inelastic residual demand curve, and ∂2Dr
i (p,qw;K)
∂p∂K ≥ 0.

This in turn enhances the generator’s ability to set higher markups.

3.2.3 Summary of main findings

Substituting the expressions for ∆Displacement and ∆Slope in Equation 5, and simplify-
ing yields,

∂(p − ci)

∂K
=

∂(p − ci)

∂qw︸ ︷︷ ︸
⋛0

· ∂qw

∂K︸︷︷︸
>0

(9)

Equation (9) summarizes the findings from the theoretical model. It shows that the
overall effect of transmission expansion on realized markups in the short run is driven
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Figure 3: Rotation of generator i’s residual demand curve post transmission expansion
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Notes: Dr
1 and Dr

2 denote the residual demand curves of generator i pre- and post-transmission expansion,
respectively, and Si denotes the supply curve of generator i. Counterclockwise rotation of residual demand
curve in Figure 3a occurs due to a flatter dispatch curve at the margin, whereas clockwise rotation as
shown in Figure 3b is a result of a steeper dispatch curve at the margin.

by two factors. The first is the effect of wind generation on markups, measured by
∂(p−ci)

∂qw
. The second is the extent to which transmission expansion integrates the electric-

ity generated from wind into the grid, measured by ∂qw
∂K . In the empirical strategy below,

I estimate the empirical analogues of each of the two components of Equation (9). The
overall effect of grid expansion on markups is the product of these two components.

3.3 Data and Descriptive Statistics

I assemble multiple datasets at the generator level for the short run analysis of markups
and emissions, from 2011 to 2014. Most of this data comes from publicly available
sources, including ERCOT, the Energy Information Administration (EIA), and the Envi-
ronmental Protection Agency (EPA).

3.3.1 Identifying marginal generators

I use publicly available data from ERCOT Report 13029 to identify the price-setting
(marginal) generators and the corresponding market clearing price at every 15 minutes
of the sample. This report identifies all the entities that submitted the highest-priced
offers for each instance of market clearing process. Note that because Texas electricity
market is a nodal market, there could be multiple marginal generators, especially during
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periods of high congestion. I aggregate this data at the hourly level, therefore all the
generators that appear in this data in a specific hour are regarded as marginal generators
for that hour.

3.3.2 Markups

Markups are defined as p − c, where p is the Locational Marginal Price (LMP) and c is
the marginal cost of production. LMP is the price of supplying one MWh of electricity
at a particular location. The other component of markup is the marginal cost of pro-
duction. As common in the literature, I construct marginal cost as the sum of two main
components: fuel costs and emissions permit costs for SO2 and NOx.11

To compute fuel costs, I use weekly price data for coal and natural gas. For coal, I use
Powder River Basin spot prices from EIA. For natural gas, I use Henry Hub Natural Gas
prices from Quandl. I calculate fuel costs by multiplying fuel price by the heat rate of
the generator.12 I use hourly electricity generation data at the generator level from ER-
COT and heat input data from EPA’s Continuous Emissions Monitoring system (CEMS).
Finally, I compute emissions permit costs using daily data on NOx and SO2 allowance
prices from S&P Global Market Intelligence. Using hourly emissions data from CEMS,
I calculate the emissions rate for SO2 and NOx by taking the ratio of emissions to net
generation.

3.3.3 Global and local emissions

Another outcome of interest for the short-run analysis is the global (CO2) and local
(SO2 and NOx) emissions. I use data on hourly CO2, SO2, and NOx emissions from
fossil fuel generators from EPA’s CEMS from 2011 to 2014. Because the impact of local
pollutants varies across space due to differences in population densities, I use estimates

11. Under the US Clean Air Act (CAA), electricity generators are subjected to emissions regulations for
SO2, NOx or both. Generators are required to purchase emission permits for each ton of emissions (SO2
and NOx) they emit. The marginal cost cit of generator i in period t is:

cit = HRit · pfuel
t︸ ︷︷ ︸

fuel costs

+ERSO2
it · pSO2

t + ERNOx
it · pNOx

t︸ ︷︷ ︸
emissions permit costs

where HRi is the generator level heat rate at period t, p f uel
t is input price of fuel, ERSO2

it is the generator
level emission rate of SO2 at period t, ERNOx

it is the generator level emission rate of NOx at period t, and
pSO2/NOx

t are the allowance prices.
12. EIA defines heat rate as the amount of energy used by a power plant to produce 1 KiloWatt hour

(kWh) of electricity. It is calculated as a ratio of fuel input to net electricity generated and is expressed in
British thermal units (Btu) per net kWh.
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of county-specific marginal damages due to an additional ton of SO2 and NOx from
Holland et al. (2016).13 I combine these county-specific damage estimates with SO2 and
NOx emissions from each generator to compute the dollar value of damages from these
pollutants.

3.3.4 CREZ Transmission Expansion

A key explanatory variable is the progress of CREZ transmission expansion. I use the
publicly available Transmission Project and Information Tracking reports from ERCOT’s
website to construct a variable that tracks total miles of transmission lines built in a day
under the CREZ expansion project. I express the CREZ progress variable as a cumulative
ratio of total progress for ease of interpretation. As shown by Figure 4a, the CREZ started
in 2010, and over 80 percent of the project was completed in 2013.

3.3.5 Descriptive Statistics

Table 1 reports descriptive statistics of key variables by fuel type. Each observation in
the sample is a generator-hour combination. About 70 percent of the observations in
the sample are natural gas and the remaining 30 percent are coal units. The average
coal generator in my sample is almost three times the capacity of an average natural gas
generator. Coal generators are also much more polluting than natural gas. Damages
from carbon emissions from coal generators are about $332/MWh, about 3 times as that
of natural gas generators. Even more striking is the difference in damages from local
pollutants. For each MWh of power generated, damages from NOx and SO2 from coal
generators are on average $100 compared to $0.76 for natural gas generators.

While the average marginal cost of coal generators is about $6/MWh higher than the
marginal cost of natural gas generators, the average markup set by a marginal natural
gas generator is about four times that of a coal generator. This is because coal generators
tend to operate at the margin during the night, whereas natural gas generators operate
at the margin during the peak demand hours. Thus, marginal natural gas generators
have greater incentives to set high markups during peak demand hours.

Figure 4b shows the hourly variation in markups, which is not apparent from Table 1.
Average markups were about $50/MWh during the peak hour of 16:00 in 2013 and over
$30/MWh in 2011 and 2012. However, markups saw a dramatic drop in 2014 across the
peak hours of 14:00 to 17:00, perhaps most significantly at 16:00. While CREZ expansion

13. The county-specific damage estimates reported in Holland et al. (2016) use the AP2 air pollution
model to capture the geographic variation in the environmental costs imposed by local pollutants.
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Table 1: Descriptive statistics of key variables by generator fuel type

Coal Natural Gas

Mean Std. Dev. Mean Std. Dev.

Nameplate Capacity (MW) 602.37 200.99 189.93 86.53

Marginal Cost ($/MWh) 21.83 21.04 15.50 14.22

Realized Markups ($/MWh) 4.18 31.97 16.58 60.40

CO2 damages ($/MWh) 332.23 335.13 104.14 117.32

SO2 & NOx damages ($/MWh) 102.40 138.37 0.76 2.87

Notes: This table presents descriptive statistics of key variables by generator fuel type. Sam-
ple is marginal generator-hour observations from August 2011 - December 2014. Total #
generator-hour observations (N) is 619,864. 33.12% of generator-hour observations are from
coal generators and 66.88% are natural gas generators. Damages (in 2020 $) computed using
SCC of $185/ton for CO2 emissions (Rennert et al. 2022) and county-specific estimates from
Holland et al. (2016) for SO2 and NOx emissions.

would have contributed to this drop, there could be other confounding factors affecting
this pattern too.

Figure 4: Daily CREZ progress and generator markups over the years
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(a) Daily progress of CREZ expansion.
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(b) Average hourly realized markups ($/MWh)
Note: Figure 4a shows the cumulative share of CREZ lines (miles) completed each day from 2010 to 2014.
Figure 4b shows the average hourly realized price-cost markups set by fossil fuel generators (2011 - 2014,
N = 619,864).
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3.4 Empirical Strategy

The findings from the theoretical model motivate the empirical strategy for the short-run
analysis, wherein I estimate the empirical analogues of Equation 10.

∂(p − ci)

∂K
=

∂(p − ci)

∂qw
· ∂qw

∂K
(10)

3.4.1 Impact of wind generation on markups

I use the following specification to estimate how additional wind generation affects
markups:

yit = αh · wt + f (Dt) + κi + δhmy + ϵit (11)

where yit is the markup set by marginal generator i at hour t of the sample. Markup is
defined as (p− c)it, where p is the Locational Marginal Price (LMP) and c is the marginal
cost of generator i at period t.14 Wind generation (GWh) at hour t is denoted by wt. The
parameter of interest is αh, which measures the change in realized markups as a result
of additional wind generation for each hour h. Thus,

αh ≡ ∂(p − ci)

∂qw

I use a wide variety of controls to account for potential confounding factors in Equa-
tion 11. I use a quadratic polynomial of system-wide electricity demand Dt to account
for variation in markups driven by spikes in electricity demand. I use generator fixed
effects (κi) to control for any generator-specific heterogeneity in markups. Finally, I use
hour by month by year fixed effects (δhmy) to control for seasonality in the Texas electric-
ity market. This seasonality arises due to varying wind patterns at different hours of the
day over the months in a year. For example, wind generation in Texas tends to be higher
during the night than during the day. Similarly, wind flow is typically higher during the
spring months than the winter and summer months.

The identifying variation for αh comes from the within-generator variation in markups
caused by changes in wind generation across hours h within a month m in a given year
y. For example, α16 is identified from deviations in markups from generator-specific av-

14. Note that there could be multiple marginal generators at a given hour of the sample. This is because
I aggregate 15 minute market clearing data to hourly level, and because ERCOT is a nodal market which
could lead to multiple marginal generators especially during periods of high congestion. Therefore, using
generator fixed effects allow me to look at the within-generator effect on markups.
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erages across all 16:00 hours (or 4 PM) within a month, in a given year. Standard errors
are clustered at the generator level to account for correlation in markups at the unit level.

3.4.2 Impact of CREZ expansion on integrating wind generation

I use the following specification to estimate the impact of CREZ expansion on wind
generation:

wt = βh · crezd + γ · maxt + ηhm + ξt (12)

where wt is the wind generation (GWh) in hour t and crezd is the percentage comple-
tion of CREZ transmission project at day d of the sample. The parameter of interest is
βh, which measures the integration of wind energy into the grid as a result of CREZ
expansion. Thus,

βh ≡ ∂qw

∂K
I use the maximum predicted generation (maxt) of electricity from wind at hour t

to control for the maximum energy production possible from wind at a given period.
This variable incorporates the generating capacity and technology, and the real-time
meteorological conditions that can affect the wind generation at hour t.15

I use hour-by-month fixed effects (ηhm) in Equation 12 to control for seasonality in
wind generation. Thus, conditional on predicted wind generation (maxt) and ηhm, βh

identifies the additional wind energy integrated into the grid as a result of transmission
expansion. The identifying variation comes from changes in wind generation caused by
transmission expansion across the same hours in a given month. I use Newey West auto-
correlation corrected standard errors with a seven-day lag structure in Equation 12. Un-
der the identifying assumption that the fixed effects and controls account for confound-
ing factors, αh captures the unbiased effect of wind generation on generator markups
and βh is the unbiased effect of CREZ expansion on wind generation.

15. ERCOT refers to maximum predicted generation as the High System Limit (HSL). HSL for a gen-
eration resource is defined as the maximum sustained energy production capability of that entity. HSL
is determined by the generator itself and is continuously updated in real time. As shown in Figure F1,
the actual electricity generated from wind (wt) closely tracks the maximum predicted wind generation
(maxt) for each hour from 2011 to 2014. The difference between wt and maxt arises due to inadequate
transmission capacity between generation and demand centers. Therefore, this difference is the amount of
wind generation curtailed by ERCOT so as to maintain grid stability. However, with the CREZ expansion
in 2013, we see the gap between the maximum and actual wind generation decreasing, with the lowest
difference observed across all hours of 2014.
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3.5 Results

Figure 5 shows the coefficient estimates of α̂h from Equation 11, i.e., the change in fossil
fuel markups due to additional wind in the grid. On average, the drop in markups
is strongest in magnitude at the peak demand hour at 4 PM, about $9/MWh. The
coefficient estimates are smallest for the off-peak hours. Due to low electricity demand
and high wind generation during off-peak, fossil fuel generators typically operate on a
smaller and flatter net demand curve as compared to on-peak hours, thereby lowering
their ability to set high markups. In other words, the impact of additional wind in
lowering fossil fuel markups is higher during the on-peak hours than during the off-
peak hours.16

Figure 5: Effect of additional wind energy on realized markups
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Notes: This figure shows the coefficient estimates (α̂h) from Equation 11. Each point estimate is the
average impact of additional GWh of wind energy on generator markups ($/MWh) for each hour. 95

percent confidence intervals constructed from standard errors clustered at the generator level.

Figure 6 presents the coefficient estimates of β̂ Equation 12, i.e., the effect of CREZ
expansion on wind generation. The coefficient estimates imply that keeping the stock of
generating capacity fixed, CREZ integrated about 0.22 GWh of wind at midnight, and
about 0.10 GWh during the peak demand hours between 3:00 and 6:00 PM. The hourly
pattern of the coefficient estimates (β̂h) closely follows the hourly wind flow pattern in
Texas, where the wind flow is strongest in the night compared to the day.

16. The on-peak hours in ERCOT are defined as the hours between 7:00 AM and 10:00 PM Central
Daylight Time from Monday through Friday.
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Figure 6: Impact of CREZ expansion on integrating wind energy into the grid
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Notes: This figure shows the coefficient estimates (β̂h) from Equation 12. Each point estimate measures
the average effect of CREZ expansion (crezd = 1) on integrating wind generation (GWh) at each hour.
95 percent confidence intervals constructed from Newey-West auto-correlation corrected standard errors
with a 7-day lag structure.

The overall impact of CREZ expansion on markups (θ) is given by the product of the
impact of wind generation on markups (αh) and the integration of wind energy (βh),

∂(p − ci)

∂K︸ ︷︷ ︸
θ̂

=
∂(p − ci)

∂qw︸ ︷︷ ︸
α̂

× ∂qw

∂K︸︷︷︸
β̂

(13)

To provide a better sense of the magnitude of θ̂, I show the percentage change in markups
(or the semi-elasticity of markups) in response to CREZ expansion in Figure 7a. We see
a clear distinction between the semi-elasticity of markups between off-peak vs. on-peak
hours. The magnitude of the percent decline is highest for hours before 7:00 AM, with
the maximum decrease of 6.3 percent at 3:00 AM. However, the percentage drop in
markups for the on-peak hours (7:00 AM to 10:00 PM) is less than 3 percent, mainly
because of the lower wind generation in these hours.

Figure 7b shows a negative trend in the markup estimates in Figure 7a by average
wind generation in each hour. This is in line with the findings from the theoretical model
- additional wind leads to an inward shift in the fossil fuel generator’s net-demand curve,
thereby reducing its ability to set high markups. The percentage decline is highest at off-
peak hours and peak hours with high wind generation.
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Figure 7: Short-run impact of CREZ expansion on realized markups
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(a) Percentage change (semi-elasticity) in markups due to CREZ by hour
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(b) Percentage change (semi-elasticity) in markups due to CREZ by wind generation

Notes: Figure 7a shows the percentage change (semi-elasticity) and the 95 percent confidence intervals
for θ̂h = α̂h × β̂h, where α̂h is the hourly impact of wind generation on markups from Figure 5 and β̂h
is the hourly impact of CREZ expansion on wind integration from Figure 6. Average markups for the
sample are shown above the x axis. Figure 7b shows the semi-elasticity values in Figure 7a, arranged by
increasing wind generation in that hour. On-Peak hours: 7:00 AM to 10:00 PM.
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3.6 Change in surplus from grid expansion

How do these changes in markups translate to gains or losses of producer surplus? In the
short run, producers of electricity earn rents from the purchasers of electricity by exercis-
ing market power. These excess rents can lead to welfare losses in the medium to long-
run due to changes in retail rates of electricity paid by end-use consumers. This would
be characterized by sub-optimal consumption of electricity in the long-run (Deryugina,
MacKay, and Reif 2020).

I conduct a simple back-of-the envelope exercise to calculate the changes in annual
rents collected by fossil fuel generators due to lower markups as a result of transmission
expansion. Using the parameter estimates from Equation 12, I first compute the coun-
terfactual wind generation (w̃t) in the absence of CREZ expansion. Next, I substitute w̃t

in the estimated Equation 11 to compute the counterfactual markups in the absence of
CREZ expansion. Thus, the change in surplus (∆S) from the absence of CREZ expansion
is the product of change in markups (∆(p − c)) and the electricity generation from fossil
fuel producers in the absence of transmission expansion (Q̃) i.e. ∆S ≈ ∆(p − c)× Q̃.

I make two simplifying assumptions to compute surplus. First, I assume that the gap
between actual wind generation (wt) and the counterfactual wind generation without
CREZ (w̃t) is met by the fossil fuel generators. In other words, the additional electricity
from wind would have been supplied by the fossil fuel generators in the absence of the
CREZ; therefore, Q̃t = Qt + (wt − w̃t). Second, I assume constant marginal costs; thus,
lower markups are reflected in a lower wholesale price of electricity (or LMP) for each
marginal generator.

This counterfactual analysis finds that generators would have accrued about $753 mil-
lion (2020 $) over the sample period of my analysis in the absence of CREZ expansion.
This is about a $227 million annual reduction in transfers from retailers to generators in
the short run and from consumers of electricity in the long run. Note that this analysis
does not include welfare gains due to more efficient dispatch of electricity generators.
Thus, these figures are likely the lower-bound estimates of the decline in producer sur-
plus due transmission expansion.

4 Short-run impact of CREZ expansion on emissions

Next, I examine how integration of wind due to transmission expansion affected the
emissions from the marginal fossil fuel generator(s) which typically respond to changes
in demand by ramping up or down. Variation in the fuel types of generators at the
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margin over the course of a day makes it informative to study which generators respond
due to changes in wind generation. For example, coal-fired generators typically operate
at the margin at night, whereas natural gas generators are the marginal units during the
day, since they are quicker to ramp up or down to meet any sudden changes in demand.
The additional electricity from wind in the night could therefore displace high-polluting
coal generators from the margin and thereby reduce emissions.

I run the following regression to estimate the impact of additional wind capacity on
marginal emissions:

Ezt = ρzh · wt + f (Dzt,t−1) + αz + δhmy + ϵzt (14)

where Ezt is the total emissions from fossil fuel generators at the margin in zone z and
wt is the wind generation at hour t of the sample. The parameter of interest is ρzh,
which measures the effect of an additional GWh of system-wide wind generation on the
marginal emissions in zone z at hour h.

I use a cubic polynomial of contemporaneous and lagged demand for electricity
Dzt,t−1 at the zone level to control for the variation in marginal emissions due to changes
in demand. Fixed effects δhmy control for average emission levels at hour h in month
m in year y. Conditioning on these averages controls for patterns in wind generation
that could also be correlated with variation in emissions. To account for baseline level
of emissions across the zones, I use zone fixed effects αz. Standard errors are clustered
at the daily level to account for serial correlation. I restrict my analysis to the four main
load zones in Texas: West, North, South, and Houston.

4.1 Results

4.1.1 Impact on marginal carbon emissions

Figure 8a shows the estimates of ρzh from Equation 14, i.e., the effect of wind generation
on carbon emissions. We see a clear decline in carbon emissions from generators across
all the zones throughout the day in response to additional GWh of wind energy. The
magnitude of decline in emissions is highest between noon and 10 PM in the North,
South, and Houston zones. However, the drop in emissions from generators in the West
is highest at night during periods of high wind.

To explore whether the pattern in Figure 8a is due to heterogeneity in generator fuel
type, I estimate Equation 14 separately for the sample of marginal emissions from coal
and natural gas generators. Two key insights emerge from the coefficient estimates in
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Figure 8b. First, the hourly pattern for coal is similar to the pattern in Figure 8a, sug-
gesting that the carbon emissions are mainly driven by emissions from coal generators.
Second, the drop in emissions from marginal natural gas generators is mostly stable
throughout the day across all four zones. This shifts the aggregate fuel type estimates in
Figure 8a downward.

Figure 8: Short-run impact of wind generation on CO2 emissions
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(a) Impact of additional wind generation on marginal CO2 emissions
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(b) Impact of additional wind generation on CO2 emissions by generator fuel type

Note: This figure shows the coefficient estimates of the regression of hourly zonal carbon emissions on
wind generation from Equation 14. 95 percent confidence intervals constructed from standard errors
clustered at the daily level.
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The coefficient estimates for coal generators suggest that electricity from wind has
a significant effect in lowering emissions from coal generators at the margin during the
night. However, there is a spike in emissions from coal units during the early hours of
the day, especially in Houston and the West. This could be a consequence of intermittent
wind generation during the early hours of the day leading to ramping up of coal-fired
power plants to meet the demand.

4.1.2 Impact on marginal local pollution (SO2 and NOx)

To estimate the impact of hourly wind generation on damages from local pollutants, I use
SO2 and NOx emissions (tons) from marginal generators as the dependent variable in
Equation 14. Figure 9 shows the coefficient estimates. The pattern of coefficient estimates
of SO2 in Figure 9 is similar to carbon emissions from coal generators in Figure 8b.17 The
presence of sulphur impurities leads to SO2 emissions as a byproduct of burning coal
in power plants, giving rise to the finding in Figure 9. SO2 emissions from natural gas
power plants are low because of low amounts of sulphur in pipeline-quality natural gas.
NOx, on the other hand, is released from burning of any fossil fuel due to the mixing of
fuel and air (EPA 1998).

Since the health impacts of local pollutants vary across space due to differences in
population, I use estimates of county-specific marginal damages due to SO2 and NOx
from Holland et al. (2016) to calculate the dollar value of damages due to emissions from
each generator. I aggregate these damages at the zonal level and estimate Equation 14

with the damage values as the dependent variable.
Coefficient estimates in Figure 9 show evidence of significant heterogeneity across

zones in damages avoided from local pollutants as a result of additional wind generation.
For the South and West, additional wind leads to declines in damages from SO2 and
NOx across all hours, whereas the effect is statistically insignificant for the North. For
Houston, there is a significant rise in local emissions during the early hours of the day.
This is similar to the rise in carbon emissions and is indicative of the ramping up of coal
generators during the early hours of the day to meet the demand.

Zooming in on West and Houston, we observe that the estimates for SO2 and CO2

emissions are driven by the only coal power plants in these zones. In Houston, the
emissions are due to the W.A. Parish Coal Plant (four generators with total capacity of 2.7
GW), whereas in the West the emissions are due to the Oklaunion Power Plant (a single
generator with 720 MW capacity). The spike in emissions is the result of ramping up

17. I present the estimates for the effect of wind generation on tons of SO2 and NOx from coal and
natural gas generators in Figure F2 in the Appendix.
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Figure 9: Short-run impact of wind generation on local emissions (SO2 and NOx)

Houston North South West

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

−0.4

−0.2

0.0

0.2

Hour

Lo
ca

l P
ol

lu
ta

nt
s 

(t
on

s)

Pollutant SO2 NOx

Note: This figure shows the coefficient estimates of the regression of hourly zonal local emissions (SO2 and
NOx) on wind generation from Equation 14. 95 percent confidence intervals constructed from standard
errors clustered at the daily level.

these units to meet demand during periods of low wind generation after 8:00 AM. These
ramping effects are shown to undercut the emissions reductions from wind, especially
with generators operating at low levels of efficient generation (Lew et al. 2012).

Thus, the availability of transmission capacity in turn promotes power from these
generators during the times of wind intermittency. These ramp-up effects are concerning
as these generators are located near major population centers, and the excess emissions
would undercut some of the benefits from transmission expansion.

4.1.3 Value of damages avoided due to CREZ expansion

I calculate the total value of marginal carbon emissions avoided (in each zone z) due to
wind integrated from CREZ expansion as, Dz($) = ∑24

h=0 τ × βh × ρzh. Taking the social
cost of carbon, τ as $185 per ton of CO2 emissions (Rennert et al. 2022), βh is the hourly
average wind generation added due to CREZ in the short run, estimated in Equation 12,
and ρzh is the impact of additional GWh of wind generation on marginal emissions.
For local pollution, I multiply the coefficient estimates with damages (in $) from local
pollutants as dependent variables with βh and aggregate over the hours to get the value
of damage avoided per day.
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Table 2: Average daily damages avoided from marginal generators due to CREZ

Damages Avoided (2020 $)

Zone CO2 SO2 + NOx Total Percent (%)

Houston 64,178 8,710 72,888 22

North 70,328 7,173 77,501 23

South 57,974 20,044 78,018 23

West 52,010 55,267 107,277 32

Total 244,491 91,194 335,685 100

Notes: This table reports the daily average of damages from car-
bon and local pollutants avoided from marginal generators due to
additional wind integrated from CREZ expansion for each zone.

Table 2 shows a decline in the estimates of daily damages from carbon emissions
from generators across all the zones in the short run, with a total value of about $244,000

worth of daily carbon emissions avoided.18 For local pollutants, the total daily damages
avoided are about $91,000, and is mainly concentrated in the West, as this is where most
of the wind displaces emissions from coal generators. The value of total daily damages
avoided from CO2, SO2 and NOx emissions are approximately $336,000 which translates
to about $123 million annually.

5 Long-run impact of CREZ announcement on investment

in wind energy

Wind developers site their projects in regions with availability and access to transmission
capacity and locate near the electrical substations to deliver their power to the grid.19 In
the data, I only see the counties where these substations were located and thus I call
them ‘CREZ counties’.20 I refer to July 2008 as the “announcement date” because it pro-
vides the most accurate information about transmission siting in the CREZ project. The

18. The coefficient estimates of hourly averages of damages avoided for each zone due to CREZ are
presented in Figure F3 in Appendix F.

19. Electrical or transmission substations typically serve as the terminal points for high-voltage trans-
mission lines, as well as serving as the hub for nearby generating plants to deliver their power to the grid.
Appendix C presents a simple conceptual model to build intuition about a wind developer’s choice of
siting its project.

20. I do not see the exact location of these substations because this information is restricted for purposes
of national security.
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technical details of the transmission expansion – the cost breakdown, expected comple-
tion dates, and the transmission service providers responsible for the expansion – were
released in October 2010 in the CREZ Progress Report (RS&H 2010).21

Figure 10: Location of wind projects pre- and post-CREZ announcement in July 2008
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Note: This figure shows wind farms in Texas pre-CREZ announcement (Jan 2001 - Jul 2008) and post-
CREZ announcement (Aug 2008 - Dec 2019). Counties announced as sites for substations for CREZ lines
are shown with hatching.

Figure 10 shows a cluster of wind projects located within and near CREZ counties
post 2008. This could be indicative of a long-run response to transmission expansion
beyond the project capacity that was planned for 2012. 22 To parse out whether certain
counties saw higher levels of wind investment in the long run as a result of CREZ
expansion, I estimate the following specification:

yit = α + β · crezi + X′Π + ϵit (15)

where yit is the outcome of interest. I use total wind capacity in county i in year t,
average wind capacity of the project (total nameplate capacity/total number of projects

21. The CREZ transmission project was selected by the Public Utilities Commission of Texas (PUCT) in
consultation with ERCOT after a multi-year process in July 2008 (NREL 2008). It was aimed at accom-
modating 18.5 GW of total wind power: 6.9 GW by the end of 2008 and a projected 11.5 GW by 2012,
by building 3,600 miles of 345 kV electricity transmission lines between existing and new substations
throughout the Panhandle, West, and East of Texas at a projected cost of $4.95 billion (PUCT 2009). Refer
Appendix B for a more detailed discussion on the planning behind CREZ expansion.

22. There is also a cluster of wind farms in coastal Texas. This is because of superior wind quality in this
region, which could be profitable for wind developers.
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in the county), and total number of turbines in county i in year t as the dependent
variables for this analysis. The variable crezi is a binary variable that specifies whether a
substation for CREZ lines was sited in county i.

The analysis is restricted to annual county-level observations from 2012 through 2019

to estimate the wind capacity added beyond the projected period of CREZ planning.
This excludes wind projects that were already in development or perhaps sited in CREZ
counties just prior to the grid expansion announcement in late 2008. Because project
planning and development typically takes a few years, this allows for the addition of
wind capacity in response to transmission expansion.23

I use a battery of control variables and fixed effects summarized by vector X in Equa-
tion (15). I use site specific wind turbine class, capacity factor, and cubic polynomial of
average wind speed to flexibly control for a county’s wind resource quality. These vari-
ables are aggregated at the county level from 2km × 2km grid data from NREL’s Wind
Integration National Datatset (WIND) toolkit (Draxl et al. 2015). I use average yearly
wind project cost data from Lawrence Berkeley’s Wind Technologies Report, and land
price data and median land acreage compiled by the Real Estate Center at Texas A&M
University to control for project costs.

To control for demographic factors that could influence CREZ siting and wind invest-
ment, I use median household income in 2007 and average population from 2007 to 2010.
I use average farm size in a county to account for variation in wind investment due to
turbine dis-amenities.24 This data comes from the USDA Census of Agriculture. Cities
and counties often enact regulations for wind projects that are sited in their jurisdiction.
These regulations, commonly known as setbacks or wind ordinances, specify limits on
factors such as the size of wind turbines, height of turbines, noise, and maximum capac-
ity. I include an indicator variable specifying whether the county (or a city in the county)
has a wind ordinance.25 To construct this variable, I use the data on wind ordinances
from WINDExchange and collect data by hand for counties with missing information.

23. Generator interconnection is one of the first steps in wind project development (AWEA 2019). The
period between signing a generator interconnection agreement and commercial operation is about 2-3
years for a typical wind project in Texas.

24. The rationale behind these variables is that urban areas tend to have higher opposition toward trans-
mission and wind project siting (Andrade and Baldick 2016). Further, it is harder to site wind farms in
areas with small farms (Winikoff and Parker 2019). Household income, population, and average farm size
for other years is highly correlated with the 2007 variables that I use in the analysis. Therefore, including
values of these variables for other years in the sample does not change the results.

25. Most counties in Texas do not have wind ordinances for wind projects. Out of 254 counties, I find that
cities in only five counties – Dallas, Ellis, Kleberg, Taylor, and Wichita – have enacted a wind ordinance
for both smaller and bigger wind projects. The presence of a wind ordinance could affect investment in
wind capacity in a county and could also be correlated with siting of transmission infrastructure.
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To control for load zone-specific characteristics, I use zone fixed effects and a cubic
polynomial for time trend to control for an increasing trend in wind generation across
all counties. I use binary indicators for the years 2012 and 2013 to control for a sudden
decline in wind installations due to the expiration of the Production Tax Credit (PTC)
in late 2012 and its subsequent extension in early 2013. Standard errors are clustered by
county to account for serial correlation at the county level.

Table 3: Effect of CREZ expansion on wind investment

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 43.04∗ 23.36∗∗ 10.62

(22.60) (11.82) (10.04)

Mean dependent variable 33.1 15.9 20.0

Semi-elasticity (%) 130.0 146.9 53.1

Controls ✓ ✓ ✓

Observations 2,024 2,024 2,024

R2
0.221 0.209 0.200

Notes: This table reports the estimate from Equation 15. The sample is a balanced panel of 253 Texas
counties. The independent variable is a binary variable indicating whether a county sited a substation
for CREZ lines. All specifications include cubic polynomial of time trend and controls for wind quality,
land price, terrain ruggedness, county level regulation, and demographics. Wind controls include site
specific wind turbine class, capacity factor, and cubic polynomial of wind speed. Land price controls
include average wind project cost, real land price, and median land acreage. Regulatory Controls
include binary indicators for PTC expiration in 2013 and presence of a wind ordinance in a county in
period t. Demographic controls include average farm size (acres) in 2007, median household income
in 2007, and average population over 2007 to 2010. Robust Standard Errors clustered at the county
level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1

Table 3 shows the OLS estimates for Equation (15). Results show that counties with
CREZ substations and transmission lines saw higher levels of wind investment and tur-
bines. One concern with using the full sample of counties is the lack of a common sup-
port over the set of covariates. The balance between treated and control units is crucial
for the problem of causal inference (Rubin 2008). I address the issue of common support
by implementing a matching strategy to obtain an unbiased estimate of the impact of
CREZ expansion on wind investment.
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5.1 Matching Strategy

The objective of the matching exercise is to construct a control group of counties that
are comparable to the treated counties on a wide set of observable characteristics. Com-
paring the counterfactual outcomes from the control group, conditional on confounding
factors, would provide the unbiased impact of transmission expansion. Making a causal
claim requires the validity of the conditional independence assumption (CIA):

E(ϵit|X, crezi = 1) = E(ϵit|X, crezi = 0) (16)

where ϵit is the unobserved component of the dependent variables of interest (yit).
Under the assumption that the unobserved component (νi) of a county that affects the
treatment status is time-invariant, using county fixed effects would eliminate the selec-
tion bias. However, since the treatment variable is assigned at the county level and at
the beginning of the sample, I cannot include county fixed effects. Instead, I assume that
νi can be approximated using some flexible function of observable county characteris-
tics Z, i.e., νi = f (Z). Therefore, validating the CIA involves comparing counties with
exactly the same combination of characteristics, such that E(ϵit| f (Z), X, crezi = 1) =

E(ϵit| f (Z), X, crezi = 0). However, the presence of continuous variables in Z and a finite
sample make it impossible to compare counties based on an exact fit of f ().

I use Coarsened Exact Matching (CEM), introduced by Iacus, King, and Porro (2012),
to obtain the set of counties comparable on observable dimensions that include both
continuous and discrete variables. I use a wide variety of pre-treatment observable
covariates to account for factors that are correlated with both CREZ siting (treatment)
as well as investment in wind energy after 2012. These factors include historical wind
capacity, wind resource quality, land price and ruggedness, ERCOT load zones, and
county-level demographic characteristics.

For wind resource quality, I use wind speed (m/s), capacity factor, and wind turbine
class designation from NREL (Draxl et al. 2015). I use average land price over 2007-2010

and median land acreage to account for variation in project costs due to land prices
across the counties. I also match counties by terrain ruggedness, which I define as the
standard deviation of elevation within a county using 30m × 30m elevation data from the
National Elevation Dataset. To account for citizen bargaining and community opposition
in siting wind projects and transmission lines, I use average farm size in 2007, median
household income in 2007, and average population of a county over 2007-2010.26 Finally,

26. Another variable to account for opposition to wind energy and transmission could be an indicator
for the presence of wind ordinance. However, very few counties in Texas have an ordinance for utility
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I perform exact matching on ERCOT load zones to capture regional differences across
load zones in the Texas electricity market. 27

Table 4 shows the balance table of these observable characteristics for pre- and post-
matched samples. As evident, CEM provides a well-balanced group of treated and con-
trol counties that look identical on all observable dimensions. Counties that do not lie in
the common support of observable characteristics are discarded from the sample. Thus,
the control group comprises 30 counties and the treated group comprises 13 counties.28

For the regression analysis on the counties obtained by matching, I use the same
set of control variables as described in Equation 15. The key identifying assumption
is that, conditional on the vector of controls X, there are no unobservables that affect
both the outcome variable and treatment status (crezi = 1). Under this assumption, the
coefficient estimate of ‘crezi’ in Equation 15 using the matched sample is the unbiased
effect of CREZ on wind investment in the long run.

scale wind. Therefore, I do not use this variable in matching but instead I include it in the set of controls
in the regression analysis.

27. Amongst the set of observable dimensions, historical wind capacity, wind speed, capacity factor,
average land price over 2007-2010, median land acreage, average farm size in 2007, median household
income in 2007, and average population over 2007-2010 are continuous, whereas site specific wind turbine
class and zone are discrete variables. Each category within wind turbine class is matched exactly, whereas
I use the following structure for exact matching on zone: {{Panhandle, West}, North, Coastal, Houston,
South, None}.

28. Figure F4 in Appendix shows the map of treated and control counties in the matched sample. Most
of the control counties are adjacent to the treated counties.
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Table 4: Balance table of key observables for Pre- and Post-Matching Sample

Type Variables Pre-Matching Post-Matching

Means Treated Means Control p-val Means Treated Means Control p-val

[CREZ = 1] [CREZ = 0] [CREZ = 1] [CREZ = 0]

Wind Resource

Quality

Pre-CREZ wind capacity 158.599 5.579 0.000 5.581 4.264 0.138

Wind Speed (m/s) 7.923 7.348 0.000 7.887 7.891 0.619

Capacity Factor 0.449 0.413 0.000 0.437 0.439 0.949

Wind turbine class: I 0.000 0.005 − 0.000 0.000 −
Wind turbine class: II 0.692 0.393 − 0.837 0.837 −
Wind turbine class: III 0.308 0.603 − 0.163 0.163 −

Land price and

ruggedness

Avg. Land Price (2007-2010) 284.684 424.427 0 228.424 231.216 0.929

Median Land Acreage 560.184 779.632 0.032 360.746 351.736 0.161

Terrain Ruggedness (m) 22.238 20.033 0.001 21.073 18.648 0.268

ERCOT

Load Zones

Coastal 0.000 0.051 − 0.000 0.000 −
Houston 0.000 0.028 − 0.000 0.000 −
None 0.000 0.107 − 0.000 0.000 −
North 0.308 0.220 − 0.163 0.163 −
Panhandle 0.179 0.136 − 0.302 0.371 −
South 0.026 0.252 − 0.000 0.000 −
West 0.487 0.206 − 0.535 0.466 −

Demographic

characteristics

Avg. Farm Size (2007) 1, 595.667 1, 724.206 0.418 1, 183.140 1, 262.035 0.118

Median Income (2007) 43, 133.130 39, 739.930 0 35, 789.190 35, 574.620 0.837

Avg. Population (2007-2010) 171, 282.000 83, 280.770 0.002 28, 917.870 20, 612.030 0.026

Total Counties 39 214 13 30

Notes: This table presents balance test of key pre-treatment observable characteristics of a county. Pre-CREZ wind capacity is the total installed capacity (MW) in a county
as of 2008. Terrain ruggedness is the standard deviation of elevation (metres) in a county. Each unit is a county-year observation. Wind turbine class is the indicator
specifying the IEC class of wind turbine model most suited for the county. Pre-Matching sample includes all county-year observations. Post-Matching sample is selected
using Coarsened Exact Matching (CEM). Exact matching is implemented on factor variables like wind turbine class and ERCOT load zones.
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5.1.1 Results

Table 5 reports the coefficient estimate of crezi from Equation 15 with total nameplate
capacity (MW), total turbines, and average project capacity (MW) in a county as the
dependent variables, respectively. The results for total nameplate capacity indicate a
significant increase in wind capacity in CREZ counties. Column (1) in Table 5 shows
that transmission expansion led to approximately 74 MW higher wind capacity in treated
counties. The semi-elasticity indicates a 205.4 percent increase in wind capacity for CREZ
counties. In a similar vein, Column (2) shows that treated counties had about 40 more
turbines on average than the control counties, with a ‘semi-elasticity’ of 249 percent.
Both of these results are statistically significant at the 5 percent level.

Table 5: Effect of CREZ expansion on wind investment - matching results

Dependent variable

Total Nameplate Total Turbines Average project

Capacity (MW) size (MW)

(1) (2) (3)

CREZ 73.73∗∗ 40.13∗∗∗ 29.33

(29.40) (14.44) (17.68)

Mean dependent variable 35.9 16.1 26.9

Semi-elasticity (%) 205.4 249.2 109.0

Controls ✓ ✓ ✓

Group × Trend FE ✓ ✓ ✓

Sample Matched Matched Matched

Observations 344 344 344

R2
0.467 0.476 0.425

Notes: This table reports the estimate from Equation 15. The sample is a balanced panel of 13

treated (CREZ) and 30 control (non-CREZ) counties from 2012-2019 obtained using CEM. The inde-
pendent variable is a binary variable indicating whether a county sited a substation for CREZ lines.
All specifications include cubic polynomial of time trend and controls for wind quality, land price,
terrain ruggedness, county level regulation, and demographics. Wind controls include site specific
wind turbine class, capacity factor, and cubic polynomial of wind speed. Land price controls in-
clude average wind project cost, real land price, and median land acreage. Regulatory Controls
include binary indicators for PTC expiration in 2013 and presence of a wind ordinance in a county
in period t. Demographic controls include average farm size (acres) in 2007, median household in-
come in 2007, and average population over 2007 to 2010. I also include group-by-trend fixed effects
to allow for time-varying unobserved factors affecting matching groups. Robust Standard Errors
clustered at the county level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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Column (3) examines whether the size of a wind project varies differentially with
county type. Everything else equal, we might expect wind developers to build bigger
wind projects near sites that allow access to transmission capacity, and therefore a posi-
tive coefficient. The coefficient estimate lends weak evidence in favor of this hypothesis.
I find that CREZ counties were associated with 29 MW larger wind projects; however,
the coefficient estimate is not statistically significant.

To contextualize these estimates, I compute the value of carbon emissions avoided
due to wind investment as a result CREZ expansion. I use an emissions rate of 0.601

tons of CO2 avoided for each MWh of on-shore wind in Texas (EPA 2021). Assuming
the capacity factor of wind in Texas is 34.57 percent, wind added due to CREZ avoided
roughly 5.34 million tonnes of CO2 emissions from the power sector in Texas. Using a
social cost of carbon of $185/ton-CO2 (Rennert et al. 2022), the value of total reduction
in carbon emissions is about $988 million.29

5.2 Threats to identification and robustness checks

5.2.1 Selection on unobservables - lobbying for or against CREZ

The key threat to identification in my empirical strategy is the selection of counties on
unobservable characteristics. This would violate the Conditional Independence Assump-
tion (CIA) and the estimates would lose their causal interpretation. While I cannot test
CIA directly, I provide institutional evidence and variety of robustness checks to support
its validity in this context.

The CREZ planning process involved discussions with various stakeholders, includ-
ing wind developers, county officials, transmission service providers, and interested
landowners. The final locations were selected based on their wind energy potential and
to accommodate the existing stock of wind capacity (Lasher 2008, 2014). Several of the
wind quality variables account for the wind energy potential of a county. Pre-CREZ
wind capacity matches counties based on the existing stock of wind capacity, which was
a key factor in selection of CREZ counties.

One of the unobservable factors is whether certain counties lobbied for or against
siting of the CREZ lines. While opposition is likely not a major concern in West Texas

29. The total value of damages prevented from emissions is much larger if we include local pollutants.
However, accurately calculating this requires computing the amount of SO2 and NOx offsets due to ad-
ditional wind across space. To get a crude measure of avoided SO2 and NOx, I use emissions rate of
0.63 lb/MWh for SO2 and 0.46 lb/MWh for NOx (EPA 2021). Using aggregate damage valuations of
local emissions from (Holland et al. 2020), I find that this wind capacity led to an annual reduction of
approximately $110.8 million worth of SO2 and $28.32 million worth of NOx in Texas.
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due to low land costs and minimal community opposition, it is certainly a concern for
East and South Texas, where some of the lines were closer to urban areas (Andrade and
Baldick 2016). In contrast, certain counties in the Panhandle region expressed interest to
the PUCT for CREZ investment. This was in part due to an already declining population
and economic loss in these counties in the years preceding CREZ expansion (Cohn and
Jankovska 2020).

I construct a set of ‘opposing’ and ‘enthusiastic’ counties by reviewing individual
cases filed by counties to Public Utilities Commission of Texas (PUCT) and informa-
tion from Cohn and Jankovska (2020).30 These filings led to hearings and negotiations
between county officials and PUCT regarding CREZ locations. I run the matching algo-
rithm by excluding these two sets of counties separately from the original sample. The
regression results for the new matched samples are reported in Appendix G.1 and are
qualitatively similar to the baseline estimates in Table 5. I also conduct a series of ro-
bustness checks in Appendix G.3 to explore how the coefficient estimates change when
excluding some control variables, group fixed effects, and matching weights. The results
are similar to the estimates in Table 5.

5.2.2 SUTVA violations due investment spillover to neighboring control counties:

Figure F4 shows that several control counties selected by matching are adjacent to the
treated counties. This could potentially lead to violation of the Stable Unit Treatment
Value Assumption (SUTVA), as some of these control counties could have seen higher
or lower levels of wind investment due to treatment assignment.31

I address this concern by estimating the baseline specification in Equation 15 along
with an indicator for control counties that are adjacent to CREZ. Coefficient estimate on
the indicator for adjacent control counties in Table G4 in Appendix G.2 shows that while
there was a small positive spillover effect, it is statistically indistinguishable from zero.
In other words adjacent control counties did not receive higher or lower wind investment
than other control units. Further, because the share of wind added due to CREZ expan-
sion is relatively smaller than the overall energy mix including the increasing trend of
wind capacity in Texas, any competitive effects on control counties are likely to be small.

30. The ‘opposing’ counties are: Kendall, Gillespie, Newton, Kimble, Kerr, Mason, and Schleicher. The
‘enthusiastic’ counties are: Dallam, Sherman, Oldham, Swisher, Lipscomb, Parmer, Lamar, Hall, and Deaf
Smith.

31. A control unit located adjacent to a CREZ county could be more competitive in receiving higher
wind investment than non-adjacent control county. However, such control counties could also see lower
investments if developers instead invest more in CREZ counties and less in non-CREZ counties. Therefore,
CREZ would have simply lead to a realignment of investments instead of overall greater investments. Both
these cases would be instances of SUTVA violations.
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5.2.3 Placebo test using cancelled CREZ counties as treatment group:

Finally, I conduct a placebo test using counties that were initially announced to site grid
infrastructure, but the siting was later canceled prior to the development stage.32 I use
these counties as the treatment group instead of the original treatment group. Compar-
ing these counties with the control units acts as a placebo test because in the long-run,
both these groups should exhibit similar levels of wind investment. Coefficient estimates
in Table G9 in Appendix confirm this hypothesis: the difference in wind investment be-
tween ‘placebo treatment group’ and the control counties is statistically insignificant.
This provides support to the evidence that empirical strategy estimates long run wind
investment as a result of grid infrastructure added due to CREZ expansion.

5.2.4 Competitiveness due to effect of CREZ on output and input prices for wind
power:

Price spillovers, from the input and the output side, as a result of CREZ expansion
could also lead to lower investment in control counties. Such spillovers could make
control counties less competitive for wind investment than treated counties. From the
output side (i.e. prices for electricity from these projects), since the Renewable Portfolio
Standard requirement for Texas was non-binding throughout the sample period, the
output price spillover is likely to be small. Moreover, because the turbines for wind
projects are purchased on a global market, grid expansion in Texas is unlikely to impact
input prices (i.e. prices of wind turbines) deferentially across counties.

5.2.5 Anticipation of CREZ announcement:

A potential source of bias in measuring the causal impact could be the anticipation
amongst wind developers of the CREZ announcement in 2008. This would be reflected
as a spike in investment in wind projects within CREZ counties in the years leading up to
the transmission expansion announcement. Using the data on generator interconnection
in Texas, I examine the existence of such an anticipation effect in Appendix D. The
analysis does not show the existence of any anticipation of the announcement of grid
expansion two and four years prior to the announcement date.

32. These counties are: Gillespie, Lampasas, Mills, Brown, Eastland, Briscoe, Taylor.
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5.2.6 Selection into treatment due to multi-phase wind projects and extensions:

Another threat to identification could exist if projects within CREZ counties prior to
2008 saw subsequent extensions shortly after 2012. This would be a selection issue if
a site was selected for CREZ expansion because of the likely development of a project
extension within the same county in the near future. To address this concern, I examine
the occurrence of post-2012 extensions of wind projects that started operating before
2008 within CREZ counties. Figure F5 in the Appendix shows that the existence of
multi-phase wind projects and project extensions are not a cause of concern.

5.2.7 Long-difference specification:

An alternative specification to estimate wind investment in response to CREZ over time
is a long-difference specification of the following form:

yiT − yi0 = βLD · crezi + γ · (XiT − Xi0) + δ · Z + (ϵiT − ϵi0) (17)

where yiT − yi,0 is the difference in outcomes between 2019 and 2012, (XiT − Xi0) is the
difference in time varying controls, and Z are county specific resource variables (wind
speed, capacity factor, terrain ruggedness) and fixed effects. The variable of interest is
crezi, the indicator specifying if county was selected for CREZ expansion. Given this
specification, βLD measures the increase in wind investment in CREZ counties between
2012 and 2019. Appendix G.4 shows that the estimates from the long-difference spec-
ification are quantitatively similar to the baseline estimates in Table 5. However, these
estimates are not statistically significant.

6 Conclusion

A critical factor in fully utilizing the benefits of renewable energy is the availability of
electricity transmission lines. Using the CREZ transmission expansion in Texas as a case
study, this paper studies the short- and long-run impacts of large-scale grid expansion. I
examine the effect of grid expansion on markups and emissions associated with marginal
fossil fuel generators in the short run and transition to wind in the long run.

The short-run analysis shows that CREZ expansion led to lower market power and
emissions from marginal fossil fuel producers. The decline in market power and emis-
sions led to $350 million worth of annual benefits. These short-run effects are comple-
mentary to several other benefits estimated in the literature. These include gains from

37



the trade of low-cost electricity (LaRiviere and Lyu 2022), lower emission due to decline
in transmission congestion (Fell, Kaffine, and Novan 2021), and enhanced grid reliabil-
ity, to name a few. In the long run, counties with CREZ transmission substations saw
significant investment in wind capacity (+202%), which prevented approximately $988

million worth of annual carbon emissions in Texas in 2020. While CREZ reduced wind
curtailment in the short run by integrating wind into the grid, growing wind investment
near CREZ counties has led to a steady rise in wind curtailment, indicating inadequate
transmission capacity.33

While the cost of CREZ expansion was $6.8 billion incurred over three years, the
benefits, as shown in this paper, are spread over a much longer time horizon. Assuming
the estimated benefits to be static indicates payback period of 7.6 years. Moreover, this
payback period is conservative since I only consider a specific set of benefits, and some
of these are likely to be dynamic.34

Even though CREZ expansion was funded through the Transmission Cost Recovery
Factor, a component in the retail rate of electricity paid by consumers (Fink et al. 2011;
Dorsey-Palmateer 2020), there are both public and private benefits of this investment.
On the public front, this includes lower grid congestion and decline in market power,
amongst others. This translates to efficient dispatch of electricity, lower wholesale and
retail prices of electricity, and therefore welfare gains in the medium to long-run. From
the private side, this includes greater investments in renewable energy. As I show, these
investments in turn provide substantial public benefits due to lower emissions.

Because transmission expansions are costly public undertakings that take several
years of planning and execution, quantifying the short- and long-run effects is crucial to
accurately assess the economic value of these investments. Several of such investments
are being considered in different parts of the US like the Midwest and the Southwest
(Puppel 2021; Kite 2022). The findings from this paper can provide insights about the
effects of transmission expansion in these regions. Alternatively, these results also high-
light the forgone benefits and environmental costs from delays in grid expansion.

33. Appendix E provides a discussion of wind curtailment in Texas. I show descriptive evidence of rising
curtailments in wind farms near CREZ counties post 2017 as a result of localized long-run investment in
wind. This can have several market impacts, such as higher market power due to grid congestion, which
could erode some of the estimated short-run benefits.

34. The value of benefits from lower emissions is dependent on the social cost of carbon. I use the
most recent Social Cost of Carbon (SCC) estimate of $185/ton-CO2 (Rennert et al. 2022). Further, this
calculation assumes short-term benefits, about $350 million per year to remain fixed and accrue from
2015. Long term benefits, about $988 million per year are also assumed to be static, but start accruing
since 2020. The assumption of long-term benefits as static is a limiting one due to the empirical strategy. It
is also conservative, in the sense that wind investment in treated counties likely grew since 2020. However,
ignoring the long-term benefits from this calculation would lead to much longer payback periods.
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Appendix

A Data Sources and Sample Construction

A.1 Data and sample for markup analysis

In this section, I describe the sample construction for the short-run analysis. The hourly
generator level sample used in the short-run analysis on the effect of CREZ expansion
on markups uses data from three sources - ERCOT Report 13029, EIA Form 860, and
EPA’s CEMS Data. A brief description of these data sources is as follows:

ERCOT Report 13029 This report includes the offer price and the name of the entity
submitting the offer for the highest-priced offer selected or dispatched by the Se-
curity Constrained Economic Dispatch (SCED) two days after the applicable op-
erating day. It identifies all the entities that submitted the highest-priced offers
selected for each SCED run (in case of multiple entities). SCED is the market clear-
ing process in ERCOT and occurs at every 15 minutes. Therefore, this data is at
15 minute intervals for August 2011 to December 2014. I aggregate this data at
the hourly level and all the generators that appear in this data in a specific hour
are regarded as marginal generators for that hour. Apart from the identity of the
generation resource, this dataset also includes the Locational Marginal Price (LMP)
resolved at the resource node for that generator. This acts as the wholesale price
corresponding to the marginal generator.

EIA Form 860 This is an annual dataset of all the power plants and generators operating
in the US. This data contains information like EIA code of the power plant and
generator(s), plant name, location, generator technology, prime mover, main energy
source, regulatory status of the power plant, nameplate capacity, operating month
and year, planned retirement year, operating status etc.

CEMS Data This is an hourly level data of all the fossil fuel generators at least 25 MW
in size. It contains information on hourly emissions (CO2, NOx, and SO2), hourly
generation, and heat input. The generators are identified using ORISPL Code.

For my sample period, ERCOT Report 13029 contains about 300 fossil fuel generators
that operate at the margin at some instance. Since I do not observe the EIA Plant Code
or Generator ID in ERCOT Report 13029, I manually match each of the 300 fossil fuel

1



generators to the corresponding generators in the EIA Form 860. I am able to successfully
match most of the generators in the ERCOT data to EIA Data.

The next part of sample construction is to match the generator data in EIA to hourly
generator data in CEMS. The generator identifiers in CEMS are the ORISPL Code and
Unit ID. ORISPL Code corresponds directly to the EIA Plant Code for most cases. I
verify and correct ORISPL Codes in case of any discrepancy. Similarly, Unit ID in CEMS
data corresponds directly to generator id in EIA Form 860. However, I verify and correct
all the cases where there is any discrepancy.

A.2 CREZ Transmission Expansion Data

I use Transmission Project Information Tracking (TPIT) Reports obtained from ERCOT to
assemble the dataset on CREZ transmission expansion. These reports contain detailed
information on various electricity transmission projects in Texas. I specifically focus
on new transmission lines built as a part of CREZ project. These reports provide the
length of each transmission line (in miles) along with their in-service dates. I also see
the counties where the terminals of each specific line lies. These terminals are usually
existing or new electrical substations. The data on the exact location of these substations
is restricted since it is considered a matter of national security, thus, I only see the county
where these substations are located.

Following counties are classified as ‘CREZ’ counties in my data: Archer, Bell, Bor-
den, Briscoe, Brown, Carson, Castro, Childress, Coke, Collin, Cottle, Dallas, Deaf Smith,
Denton, Dickens, Ector, Glasscock, Gray, Haskell, Hill, Jack, Kendall, Lampasas, Mar-
tin, Mitchell, Navarro, Nolan, Parker, Pecos, Schleicher, Scurry, Shackelford, Sterling,
Tarrant, Taylor, Tom Green, Upton, Wilbarger, Wise.
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B Institutional Details

B.1 Real-time electricity market

Real-time market operations mainly refers to the operating hour and the hour immedi-
ately preceding the operating hour. ERCOT collects the status of all the transmission in-
frastructure from Transmission Service Providers and identifies transmission constraints
and forecasts demand at various points of the network for the operating hour. This
information is made available to the supply side of the market that comprises of the
generating firms.

To participate in the market, each firm submits offer curves for all the generators
that it owns. These offer curves are monotonically increasing vectors of price-quantity
pairs based on the demand and grid information provided by ERCOT. Firms enjoy great
flexibility to specify and alter their offer curves which can be different for different hours
of the day. They can input up to ten price-quantity pairs and alter their offer curve up
to the hour preceding the operating hour. This allows a firm to update its strategy when
more information on various factors like demand, transmission constraints, or strategies
of competitors is available.

The demand side of the market is comprised of retailers and load serving entities who
submit demand for energy at various locations in the operating hour. Equipped with the
information on supply, demand, and transmission constraints, ERCOT deploys a market
clearing process that occurs every 5 minutes. This process identifies least cost generating
resources that would meet the electricity demand at various locations in the system while
respecting transmission constraints and the capacity limits of the generating resources.
Apart from matching supply to demand, a major task of this process is to prevent the
system from exceeding operational limits thus maintaining the reliability of the network.
This market clearing process generates market clearing prices called Locational Marginal
Price which is the location specific wholesale price of electricity.

B.2 Details of CREZ Expansion Planning

The process of identifying the locations and cost of CREZ began following the enactment
of the Texas Senate Bill 20 in 2005. In April 2008, ERCOT submitted a transmission
optimization study that delineated four scenarios of transmission expansion (ERCOT
2008). These scenarios were expected to integrate the existing wind capacity of 6.9 GW
by the end of 2008 and varying levels of projected wind capacities to be added until
2012. These scenarios differed widely in total cost and amount of wind the resulting
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transmission infrastructure could accommodate by 2012. Scenario 1A was expected to
cost $2.95 billion and accommodated 5.15 GW of additional wind; Scenario 1B, was
deemed more scaleable with a cost of $3.78; Scenario 2 was projected to cost $4.95 billion
and accommodate 11.5 GW; Scenario 3 would accommodate 17.9 GW at a cost of $6.38

billion; and Scenario 4 would accommodate 17.5 GW wind with a total cost of $5.75

billion. These scenarios were evaluated based on three main objectives in ERCOT’s
transmission optimization study:

1. All of these scenarios would integrate existing wind capacity of 6.9 GW in West
Texas.

2. The overall wind curtailment due to transmission congestion would be no more
than 2 percent (curtailment as a share of total wind generation). For each scenario,
curtailments on existing and planned wind facilities upto 2012 were considered.

3. ERCOT adopted an incremental approach to transmission planning that would
essentially “overlay” the new CREZ lines on the existing grid in West Texas. In
other words, the new system would not even be indirectly connected to the existing
grid in West Texas. This was done in order to prevent widespread congestion and
overloads in the existing low voltage system due to additional wind generation in
the West and Panhandle region.

B.3 Transmission congestion and market power

How does presence of transmission constraints translate to generating firms exercising
market power? Generators submit monotonically increasing offer curves which is a func-
tion of price and quantity of electricity they are willing to supply. Generators anticipate
demand and transmission constraints and hence submit a bid that is composed of the
marginal cost of supplying electricity and a markup term.35

Following example illustrates how inadequate transmission can prevent ERCOT from
dispatching the cost effective generating units and incentivize them to exercise market
power. Consider two regions- A and B. Region A consists of low cost generators that
can provide up to 100 MW of electricity and region B consists of high cost generators
that can also provide 100 MW of electricity. However, Region A and B are connected
by a transmission line that can carry only 50 MW of electricity. Suppose at some time

35. In ERCOT, generators have access to demand forecasts and the information on transmission infras-
tructure. They use this publicly available information and any private information about the market to
determine their offer curves.
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t there is a demand for 80 MW of electricity in region B by households. ERCOT as the
planner, would like to dispatch all of the 80 MW from low cost generators in Region A.
However, due to the transmission limit it can only dispatch 50 MW. At this point, the
transmission constraint between A and B is said to be binding or there is transmission
congestion between A and B. To meet the remaining demand, ERCOT has to dispatch
30 MW of electricity from high cost generators located in region B. Thus, presence of
transmission constraints leads to dispatch of higher cost generators when the demand
could have been met by low cost generators. Since electricity demand is fairly inelastic
in the short-run, high cost generators could exercise market power by charging a price
for electricity that is well above their marginal cost of generation. Note that the dispatch
of electricity in reality is more complicated since the flow of current follows Kirchhoff’s
Laws. This example abstracts from such real life aspects in order to illustrate the impact
of transmission constrains on generator dispatch.
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C Conceptual model of wind project location choice

This section presents a simple conceptual model to build intuition on a wind developer’s
location choice for its wind project. Wind developer i choose location j to site their wind
projects in order to maximize present value of annual profits written as:

πij = piE(Qj)− Fij − OMij (18)

where, pi is the per MWh price that the wind farm receives, E(Qj) is the expected
electricity production from the wind farm which is a function of wind resource quality
and the number and types of turbines. Fij are the fixed costs and OMij are the operations
and maintenance costs associated with the project.

The location choice is dependent on availability and access to transmission lines K at
site j. Access to transmission lines is necessary for the wind farm to be able to deliver
its electricity to the grid. Therefore, for two locations with similar wind quality, profits
would be higher at the location with better access and availability of transmission lines,

∴ Kj > Kj′ =⇒ πij(Kj) > πij′(Kj′) (19)

Next, the developer considers how far to locate from the electrical substation corre-
sponding to the grid. 36 To see this, consider the profit function in Equation 18:

πij = piE(Qj)− [Ci + κj · l]︸ ︷︷ ︸
fixed costs

−OMij (20)

The fixed costs is a combination of two main components. The first is Ci, fixed costs
incurred in building the wind project (like purchasing wind turbines), and second is the
cost of constructing a spur transmission line, denoted by κj · l. Spur transmission line is
a relatively short transmission line that connects the generator to the bulk transmission
grid (Andrade and Baldick 2016). The cost of building spur lines is borne by the devel-
oper of the project. The schematic in Figure C1 illustrates the cost allocation of spur lines
and bulk transmission lines between developer and end use consumers of electricity in
Texas.

The length of a spur line in Equation 20 is denoted by l (> 0) and κj is a positive
cost multiplier which summarizes the costs associated with building a unit length of

36. Electrical (step-up) substations increase the voltage of electricity generated by power plants in order
to make it efficient for transmission using long distance transmission lines. Therefore, these substations
typically serve as the point of injection of electricity from the power plants into the grid.
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Figure C1: Illustration of transmission cost allocation in Texas for a new generation
project. Source: Andrade and Baldick (2016)

spur line (of a specific voltage) at location j. These costs are mainly due to land prices,
terrine features, and generation technology (example wind, coal, natural gas). Partially
differentiating πij with respect to length l shows that profits are decreasing in spur line
length, i.e.

∂πij

∂l
= −κj < 0 (21)

therefore, wind developers have an incentive to locate near the substation associated
with the bulk transmission grid in order to maximize profits (or minimize costs). The
simplified model shows that wind developers site their project in a region with access
and availability to the grid, and then tend to locate near the grid substations to minimize
the costs of building the spur transmission line.
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D Anticipation Effects

In this section, I examine whether there was an anticipation amongst wind developers
to invest in wind projects in the period leading upto the announcement of CREZ trans-
mission expansion in late 2008. Existence of such an anticipation could lead to biased
estimates of the impact on CREZ announcement on wind investment in Section 5.1. The
direction of the bias is expected to be downwards since the coefficient estimate would
not capture the wind investment in periods before the announcement.

To examine the anticipation effects, I use information on generator interconnection as
a measure of changes in wind project planning in ERCOT since the latter is usually unob-
served or hard to measure. Wind developers usually sign the interconnection agreement
if they expect to build a project at a particular site and this is usually one of the first
steps in the process of building a wind project (AWEA 2019).I use interconnection data
from EIA Form 860 for the years 2004 - 2012 and Generator Interconnection Status (GIS)
Reports from ERCOT for the years 2013 - 2019 to get the date when a wind project signed
the interconnection agreement. I match these data with the wind project data from EIA
860 and AWEA to get information on project level characteristics. The matched dataset
comprises of 147 projects that signed the interconnection agreement between 2004 and
2018. In terms of successful matches, this represents about 87 percent of the existing
wind projects in Texas between 2004-2018.

I run several regressions to test the existence of an anticipation effect after controlling
for confounding factors that could influence generator interconnection. Specifically, I
estimate versions of the following specification:

yit = αi + β · 1{year ∈ [k, 2008]}+ X‘Π + ϵit (22)

where, yit is the inverse hyperbolic sines (IHS) of number of projects or the total name-
plate capacity of projects that signed the interconnection agreement in county i in year
t. The independent variable of interest 1{year ∈ [k, 2008]} is an indicator for the range
of years from k to 2008, denoting the anticipation period. I consider two versions of this
variable - k = 2006, i.e. 1{year ∈ [2006, 2008]} and k = 2004, i.e. 1{year ∈ [2004, 2008]}
as the anticipation period. I estimate Equation 22 separately for CREZ and non-CREZ
counties.

I use a rich set of covariates to control for confounding factors. I use county fixed
effects denoted by αi and a vector of county and demographic controls summarized by
X. This includes a linear time trend, cubic polynomial of county specific wind speed,
capacity factor of wind generation, median land acerage, real price of land, indicator
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for whether the county has a wind ordinance, average farm size (acres) in 2007, median
household income, and log of population. To account for correlation in interconnection
queue across counties, I cluster the error ϵit at the county level.

Table D1 reports the results of OLS regression of Equation 22 with [2006, 2008] as the
anticipation period. Column (5) is the baseline specification for the sample using CREZ
counties and Column (6) is the baseline specification for the sample using non-CREZ
counties. Panel A shows the results for IHS of the number of projects in interconnec-
tion as the dependent variable. The coefficient estimates suggest that anticipation effect
for both CREZ and non-CREZ counties is positive but statistically and economically in-
significant. Restricting the sample to counties obtained using matching (Panel A.2) in
the long-run analysis does not change the results by much with the exception of the esti-
mate for non-CREZ counties. I find a weak positive effect with an elasticity of 8 percent,
however the coefficient is only significant at 10 percent critical level.

Panel B shows the results for IHS of the total capacity of projects in interconnection
as the dependent variable. I find a positive anticipation effect for CREZ counties but it
is not statistically significant in the baseline specification. Interestingly, the coefficient
estimate for non-CREZ counties is negative but the magnitude is economically and sta-
tistically insignificant. Restricting to the counties in matching sample (Panel B.2) flips the
pattern with CREZ counties showing a negative anticipation effect and non-CREZ coun-
ties showing a positive anticipation effect. However, none of these effects are statistically
indistinguishable from zero.

Table D2 reports the results of OLS regression of Equation 22 with [2004, 2008] as the
anticipation period. Column (5) and Column (6) are the baseline specifications for the
samples using CREZ counties and non-CREZ counties respectively. Similar to Table D1,
the coefficient estimates do not reveal any evidence of anticipation effects during the
years 2004 to 2008 for both CREZ and non-CREZ counties. Therefore, based on the
results from this analysis I rule out the possibility of an anticipation effect in the form of
an increase in the number and capacity of wind projects in the ERCOT interconnection
queue in the years leading upto CREZ announcement in late 2008.
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Table D1: Anticipation of CREZ announcement for the years 2006 to 2008

(1) (2) (3) (4) (5) (6)

A. Dependent variable: IHS of # projects in interconnection queue)

A.1 All counties in Texas

Year ∈ [2006, 2008] 0.102∗ 0.002 0.102∗ 0.002 0.066 0.002

(0.054) (0.008) (0.055) (0.009) (0.059) (0.010)

Elasticity 0.107 0.002 0.107 0.002 0.068 0.002

R2 0.016 0.000 0.137 0.116 0.145 0.117

A.2 Restricting to counties in the matching sample

Year ∈ [2006, 2008] 0.004 0.065 0.004 0.065 0.004 0.077∗

(0.054) (0.044) (0.055) (0.045) (0.056) (0.044)

Elasticity 0.004 0.067 0.004 0.067 0.004 0.080

R2 0.000 0.017 0.064 0.081 0.085 0.092

B. Dependent variable: IHS of total capacity (MW) in interconnection queue)

B.1 All counties in Texas

Year ∈ [2006, 2008] 0.454∗ −0.021 0.454∗ −0.021 0.304 −0.002

(0.242) (0.035) (0.250) (0.037) (0.287) (0.043)

Elasticity 0.575 −0.020 0.575 −0.02 0.356 −0.002

R2 0.012 0.0001 0.137 0.123 0.145 0.124

B.2 Restricting to counties in the matching sample

Year ∈ [2006, 2008] −0.018 0.158 −0.018 0.158 −0.013 0.244

(0.264) (0.151) (0.273) (0.156) (0.281) (0.154)

Elasticity −0.018 0.172 −0.018 0.172 −0.013 0.276

R2 0.000 0.004 0.072 0.063 0.097 0.079

County FE ✓ ✓ ✓ ✓

Time Trend ✓ ✓

Wind Controls ✓ ✓

County Controls ✓ ✓

Sample CREZ non-CREZ CREZ non-CREZ CREZ non-CREZ

Notes: This table reports the results of regressions analyzing the anticipation effect of CREZ announcement for the years
2006 to 2008. Sample specifies whether the estimation sample is CREZ counties or non-CREZ counties. Panels A.1 and
B.1 use all the counties in the data. Total observations in ‘CREZ’ and ‘non-CREZ’ Sample in A.1 and B.1 is 585 and
3,225 respectively. Panels A.2 and B.2 restrict the observations to the counties obtained in the matching sample. Total
observations in ‘CREZ’ and ‘non-CREZ’ Sample in A.2 and B.2 is 195 and 450 respectively. The independent variable is
an indicator variable for the years in 2006 to 2008. Time Trend is a linear time trend variable. Wind Controls include
capacity factor and cubic polynomial of wind speed. County Controls include average wind project cost, real land price,
and median land acreage. Regulatory Controls include median land acreage, real land price, indicator for the presence
of wind ordinance, average farm size (acres) in 2007, median household income in 2007, and log of population. Robust
Standard Errors clustered at the county level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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Table D2: Anticipation of CREZ announcement for the years 2004 to 2008

(1) (2) (3) (4) (5) (6)

A. Dependent variable: IHS of # projects in interconnection queue

A.1 All counties in Texas

Year ∈ [2004, 2008] 0.090∗ −0.003 0.090∗ −0.003 0.090 −0.003

(0.046) (0.006) (0.048) (0.006) (0.065) (0.009)

Elasticity 0.094 −0.003 0.094 −0.003 0.095 −0.003

R2 0.017 0.0001 0.138 0.116 0.147 0.117

A.2 Restricting to counties in the matching sample

Year ∈ [2004, 2008] −0.031 0.026 −0.031 0.026 −0.043 0.063

(0.043) (0.028) (0.044) (0.029) (0.087) (0.039)

Elasticity −0.031 0.026 −0.031 0.026 −0.042 0.065

R2 0.003 0.004 0.067 0.068 0.087 0.083

B. Dependent variable: IHS of total capacity (MW) in interconnection queue

B.1 All counties in Texas

Year ∈ [2004, 2008] 0.394∗ −0.044∗ 0.394∗ −0.044 0.443 −0.016

(0.215) (0.027) (0.222) (0.027) (0.319) (0.040)

Elasticity 0.482 −0.043 0.482 −0.043 0.557 −0.016

R2 0.013 0.001 0.137 0.124 0.147 0.125

B.2 Restricting to counties in the matching sample

Year ∈ [2004, 2008] −0.194 0.006 −0.194 0.006 −0.264 0.205

(0.221) (0.106) (0.229) (0.109) (0.435) (0.153)

Elasticity −0.176 0.006 −0.176 0.006 −0.232 0.227

R2 0.005 0.000 0.077 0.059 0.100 0.075

County FE ✓ ✓ ✓ ✓

Time Trend ✓ ✓

Wind Controls ✓ ✓

County Controls ✓ ✓

Sample CREZ non-CREZ CREZ non-CREZ CREZ non-CREZ

Notes: This table reports the results of regressions analyzing the anticipation effect of CREZ announcement for the years
2004 to 2008. Sample specifies whether the estimation sample is CREZ counties or non-CREZ counties. Panels A.1 and
B.1 use all the counties in the data. Total observations in ‘CREZ’ and ‘non-CREZ’ Sample in A.1 and B.1 is 585 and
3,225 respectively. Panels A.2 and B.2 restrict the observations to the counties obtained in the matching sample. Total
observations in ‘CREZ’ and ‘non-CREZ’ Sample in A.2 and B.2 is 195 and 450 respectively. Time Trend is a linear time
trend variable. Wind Controls include capacity factor and cubic polynomial of wind speed. County Controls include
average wind project cost, real land price, and median land acreage. Regulatory Controls include median land acreage,
real land price, indicator for the presence of wind ordinance, average farm size (acres) in 2007, median household income
in 2007, and log of population. Robust Standard Errors clustered at the county level reported in parenthesis. Significance:
***p<0.01;**p<0.05;*p< 0.1
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E Implications of long-run investment in wind on curtail-

ment

Electricity market operators typically curtail renewable resources during periods of con-
gestion to maintain grid stability.37 In Texas, the lack of adequate transmission capacity
to transport electricity from wind farms in the West has been the primary source of wind
curtailment, reaching about 17 percent of total wind generation in 2009 (Bird, Cochran,
and Wang 2014). Section 3.3 shows that, with generation capacity fixed in the short run,
the availability of transmission capacity led to the integration of wind that would have
been curtailed.

Figure E1a shows that CREZ expansion led to a significant decline in wind curtail-
ments post-2014, but a steady rise since 2016. Further, Figure E1b shows that average
hourly curtailments in 2019 were higher than pre-grid expansion levels in 2011 and
2012. In the long-run analysis (Section 5), locations that received investment in CREZ
infrastructure saw higher levels of wind investments in the long run. Even though wind
capacity in Texas has been increasing, there have not been any significant grid expansion
projects post-CREZ.

The rise in curtailment could be an outcome of localized investment in wind in the
West and inadequate transmission capacity. I provide descriptive evidence by comparing
curtailment in wind farms near CREZ counties to those farther away. I estimate the
following two-way fixed effects specification at the quarterly level:

yit =
Q4/2019

∑
k=Q2/2011
( ̸=Q4/2013)

γk · 1{in/adjacent to CREZ}+ αi + δqy + ϵit (23)

where yi is the curtailment in wind farm i in hour t.38 The parameter of interest γk

measures the percentage difference in curtailment in wind farms within or adjacent to
CREZ counties, compared to those located elsewhere, for each quarter in 2011 to 2019,
with the fourth quarter of 2013 as the reference. I include wind farm (αi) and quarter of

37. As noted above, wind curtailment is the reduction in electricity generated from a wind generator
below the level it could have produced given available resources (Bird, Cochran, and Wang 2014). For
example, suppose a wind generator is estimated to produce 100 MW of electricity in a period t but is finally
scheduled to produce 80 MW. In that case, the corresponding wind curtailment is 20 MW. Curtailment
typically is involuntary on the part of the generator. ERCOT determines the extent of curtailments based
on transmission limits.

38. I use inverse hyperbolic sine (IHS) transformation of the dependent variable to account for the sig-
nificant mass of zeros in the dependent variable.
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Figure E1: Wind curtailment in Texas from 2011 to 2019
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(a) Total hourly wind curtailment
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(b) Average hourly wind curtailment

Note: Figure E1b shows average hourly wind curtailments for each hour from 2011 to 2019. For clarity,
solid lines highlight the curtailment pattern pre-CREZ expansion (2012), post-CREZ expansion (2014), and
for the most recent year (2019) in the sample.

the year (δqy) fixed effects. I estimate Equation 23 separately for off-peak [22:00 - 7:00)
and on-peak [7:00 - 22:00) hours.

Figure E2 shows the estimates of γk from Equation 23. Curtailment was significantly
higher in wind farms near CREZ counties in the years leading up to transmission ex-
pansion in 2014, especially in off-peak hours. For instance, in 2012, curtailment in wind
farms in these regions reached about 1.5 times that of wind farms elsewhere. We notice
a decline in curtailments after transmission expansion in 2014.
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Figure E2: Percentage difference in curtailments between wind farms near CREZ coun-
ties and those in other regions

CREZ Expansion CREZ Expansion

Off−Peak [22:00 − 7:00) On−Peak [7:00 − 22:00)

2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019

0.0

0.5

1.0

1.5

2.0

Year

S
em

i−
el

as
tic

ity

Note: This figure shows the estimates of γk from Equation 23. Each coefficient estimate shows the percent-
age change in curtailment between wind farms near CREZ counties to those in other regions for off-peak
and on-peak hours over 2011 to 2019. Triangles highlight the coefficient estimates corresponding to the
windier spring quarter (April - June) in Texas.

However, since 2017, wind farms near CREZ counties have seen a steady rise in cur-
tailments, upward of 25 percent in the off-peak hours. This effect is both economically
and statistically significant. Rising wind investment but inadequate transmission capac-
ity could erode some of the short-run benefits from CREZ expansion. For instance, grid
congestion during periods of high demand can incentivize fossil fuel firms to set higher
markups. Similarly, inability to transport low-cost electricity from wind during high
wind generation could lead to negative wholesale prices in the wind-rich West, thereby
reducing the value of renewable investment in these regions.
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F Supplementary Figures

Figure F1: Hourly averages of actual wind generation (wt) and maximum predicted
wind generation (maxt) from 2011 - 2014
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Notes: maxt is the maximum energy production capability of the generator at period t. It is established
by the generator itself and is continuously updated in real time.
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Figure F2: Short-run impact of wind generation on local pollutants (SO2 and NOx) by
generator type

(a) Impact of wind generation on local pollutants (SO2 and NOx) from coal generators
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(b) Impact of wind generation on local pollutants (SO2 and NOx) from natural gas generators
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Figure F3: Hourly averages of the marginal damages (2020 $) avoided due to CREZ
expansion for each zone over 2011 - 2014.

(a) Damages due to global pollution (CO2)
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(b) Damages due to local pollution (SO2 and NOx)

Houston North South West

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

−5.0

−2.5

0.0

2.5

Hour

S
O

2+
N

O
x 

da
m

ag
es

 (
in

 1
00

0$
)

17



Figure F4: Treated and control counties obtained using Coarsened Exact Matching
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Notes: Total number of control counties are 30, total number of treated counties are 13. Unshaded counties
are discarded from the sample used in the regression analysis because they lie outside of the common
support of observable characteristics.
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Figure F5: Wind projects with multiple phases and extensions
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Note: This figure presents projects with multiple phases or extensions within CREZ counties. Each dot
represents at least one phase. Projects with single dots (Loraine Windpark, Notrees Windpower, Pattern
Panhandle, Scurry County, and Woodward Mountain) have multiple phases completed in the same year.
There are 37 individual projects within 15 “main projects” shown in this figure. The selection issue arises
if a line segment intersects both the dotted vertical lines for the years 2008 and 2012. From the figure, we
do not see any instance of such a situation. However, wind projects under Majestic and Sherbino warrant
more attention. The first phase of Majestic was completed in 2009 and the second one was completed in
2012. This is not a cause of concern since the first phase started operating post CREZ announcement in
2008 and only the second phase is counted in the dependent variable(s). In case of Sherbino, although the
first phase was completed in 2008, the second phase was completed in 2011 and is therefore not included
in the dependent variable(s).
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G Supplementary Tables

G.1 Robustness checks for matching on unobservables

G.1.1 Results excluding ‘opposing’ counties

Table G1: Effect of CREZ expansion on wind investment - matching results

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 67.29∗∗ 36.72∗∗∗ 28.16∗

(25.93) (12.42) (15.63)

Mean Dep. Variable 40.807 18.15 29.804

Semi-elasticity (%) 165.9 202.3 94.5

Controls ✓ ✓ ✓

Group × Trend FE ✓ ✓ ✓

Matching Weights ✓ ✓ ✓

Sample Matched Matched Matched

Observations 280 280 280

R2
0.489 0.505 0.471

Notes: This table reports the result of regressions excluding ‘opposing’ counties (Kendall,
Gillespie, Newton, Kimble, Kerr, Mason, and Schleicher) from the overall sample before using
Coarsened Exact Matching to obtain the matched sample. Total number of control counties is
23 and total number of treated counties are 12. The independent variable is a binary variable
indicating whether a county sited a substation for CREZ lines. All specifications include cubic
polynomial of time trend and controls for wind quality, land price, terrain ruggedness, county
level regulation, and demographics. Wind controls include site specific wind turbine class,
capacity factor, and cubic polynomial of wind speed. Land price controls include average
wind project cost, real land price, and median land acreage. Regulatory Controls include FE
for PTC and wind ordinance in a county. Demographic controls include average farm size
(acres) in 2007, median household income in 2007, and average population over 2007 to 2010. I
also include group-by-trend fixed effects to allow for time-varying unobserved factors affecting
matching groups. Robust Standard Errors clustered at the county level reported in parenthesis.
Significance: ***p<0.01;**p<0.05;*p< 0.1
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G.1.2 Results excluding ‘enthusiastic’ counties

Table G2: Effect of CREZ expansion on wind investment - matching results

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 89.83∗∗∗ 48.53∗∗∗ 37.60∗

(30.60) (14.78) (18.74)

Mean Dep. Variable 36.636 16.484 26.761

Semi-elasticity (%) 245.2 294.4 140.5

Controls ✓ ✓ ✓

Group × Trend FE ✓ ✓ ✓

Matching Weights ✓ ✓ ✓

Sample Matched Matched Matched

Observations 312 312 312

R2
0.498 0.517 0.436

Notes: This table reports the result of regressions excluding ‘enthusiastic’ counties (Dallam,
Sherman, Oldham, Swisher, Lipscomb, Parmer, Lamar, Hall, Deaf Smith) from the overall sam-
ple before using Coarsened Exact Matching to obtain the matched sample. Total number of
control counties is 26 and total number of treated counties are 13. The independent variable is
a binary variable indicating whether a county sited a substation for CREZ lines. All specifica-
tions include cubic polynomial of time trend and controls for wind quality, land price, terrain
ruggedness, county level regulation, and demographics. Wind controls include site specific
wind turbine class, capacity factor, and cubic polynomial of wind speed. Land price controls
include average wind project cost, real land price, and median land acreage. Regulatory Con-
trols include FE for PTC and wind ordinance in a county. Demographic controls include average
farm size (acres) in 2007, median household income in 2007, and average population over 2007

to 2010. I also include group-by-trend fixed effects to allow for time-varying unobserved fac-
tors affecting matching groups. Robust Standard Errors clustered at the county level reported
in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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G.1.3 Results excluding ‘opposing’ and ‘enthusiastic’ counties

Table G3: Effect of CREZ expansion on wind investment - matching results

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 80.84∗∗∗ 44.47∗∗∗ 32.42∗

(29.04) (13.43) (18.84)

Mean Dep. Variable 41.033 18.348 29.000

Semi-elasticity (%) 197.0 242.4 111.8

Controls ✓ ✓ ✓

Group × Trend FE ✓ ✓ ✓

Matching Weights ✓ ✓ ✓

Sample Matched Matched Matched

Observations 256 256 256

R2
0.517 0.545 0.466

Notes: This table reports the result of regressions excluding ‘opposing’ (Kendall, Gillespie,
Newton, Kimble, Kerr, Mason, and Schleicher) and ‘enthusiastic’ (Dallam, Sherman, Oldham,
Swisher, Lipscomb, Parmer, Lamar, Hall, Deaf Smith) counties from the overall sample before
using Coarsened Exact Matching to obtain the matched sample. Total number of control coun-
ties is 20 and total number of treated counties are 12. The independent variable is a binary vari-
able indicating whether a county sited a substation for CREZ lines. All specifications include
cubic polynomial of time trend and controls for wind quality, land price, terrain ruggedness,
county level regulation, and demographics. Wind controls include site specific wind turbine
class, capacity factor, and cubic polynomial of wind speed. Land price controls include aver-
age wind project cost, real land price, and median land acreage. Regulatory Controls include
FE for PTC and wind ordinance in a county. Demographic controls include average farm size
(acres) in 2007, median household income in 2007, and average population over 2007 to 2010. I
also include group-by-trend fixed effects to allow for time-varying unobserved factors affecting
matching groups. Robust Standard Errors clustered at the county level reported in parenthesis.
Significance: ***p<0.01;**p<0.05;*p< 0.1
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G.2 Investment spillovers to control counties adjacent to CREZ (treated)

counties

Table G4: Regression results with an indicator for control counties adjacent to CREZ

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 76.82∗∗ 42.49∗∗ 36.01∗

(33.45) (16.08) (21.11)

Adjacent to CREZ 4.25 3.24 9.20

(27.49) (12.99) (19.47)

Mean Dep. Variable 35.907 16.067 26.951

Semi-elasticity (%) 213.9 264.4 133.6

Controls ✓ ✓ ✓

Group × Trend FE ✓ ✓ ✓

Matching Weights ✓ ✓ ✓

Observations 344 344 344

R2
0.467 0.477 0.426

Notes: This table reports the estimate from Equation 15. The sample is a balanced panel of
13 treated (CREZ) and 30 control (non-CREZ) counties from 2012-2019 obtained using CEM.
The independent variable is a binary variable indicating whether a county sited a substation
for CREZ lines. ‘Adjacent to CREZ’ is an indicator specifying whether a control county is
adjacent to a treated county. There are 17 adjacent control counties. All specifications include
cubic polynomial of time trend and controls for wind quality, land price, terrain ruggedness,
county level regulation, and demographics. Wind controls include site specific wind turbine
class, capacity factor, and cubic polynomial of wind speed. Land price controls include average
wind project cost, real land price, and median land acreage. Regulatory Controls include FE
for PTC and wind ordinance in a county. Demographic controls include average farm size
(acres) in 2007, median household income in 2007, and average population over 2007 to 2010. I
also include group-by-trend fixed effects to allow for time-varying unobserved factors affecting
matching groups. Robust Standard Errors clustered at the county level reported in parenthesis.
Significance: ***p<0.01;**p<0.05;*p< 0.1
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G.3 Robustness check results with different specifications for full and

matching samples

Table G5: Effect of CREZ on total wind capacity (MW)

Dependent variable: Total Nameplate Capacity (MW)

(1) (2) (3) (4)

CREZ 51.14∗∗ 43.04∗ 57.11 73.73∗∗

(24.31) (22.60) (34.43) (29.45)

Controls ✓ ✓

Sample Full Full Matching Matching

Mean Dep. Variable 33.069 33.069 35.907 35.907

Observations 2,024 2,024 344 344

R2
0.027 0.221 0.061 0.467

Notes: The dependent variable is total wind capacity (MW) in a county in year t. The
independent variable is a binary variable indicating whether a county is CREZ or not.
Full Sample is a balanced panel of 253 Texas counties from 2012 - 2019. Matched Sample
is a balanced panel of 13 treated (CREZ) and 30 control (non-CREZ) counties from 2012

- 2019 obtained using CEM. The independent variable is a binary variable indicating
whether a county sited a substation for CREZ lines. Specification in Columns (2) and
(4) include cubic polynomial of time trend and controls for wind quality, land price,
terrain ruggedness, county level regulation, and demographics. Wind controls include
site specific wind turbine class, capacity factor, and cubic polynomial of wind speed.
Land price controls include average wind project cost, real land price, and median land
acreage. Regulatory Controls include FE for PTC and wind ordinance in a county. De-
mographic controls include average farm size (acres) in 2007, median household income
in 2007, and average population over 2007 to 2010. I also include group-by-trend fixed
effects in Column (4) to allow for time-varying unobserved factors affecting matching
groups. Robust Standard Errors clustered at the county level reported in parenthesis.
Significance: ***p<0.01;**p<0.05;*p< 0.1
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Table G6: Effect of CREZ on total wind turbines

Dependent variable: Total Turbines in a County

(1) (2) (3) (4)

CREZ 27.49∗∗ 23.36∗∗ 31.36∗ 40.13∗∗∗

(12.74) (11.82) (17.77) (14.46)

Controls ✓ ✓

Sample Full Full Matching Matching

Mean Dep. Variable 15.928 15.928 16.067 16.067

Observations 2,024 2,024 344 344

R2
0.033 0.209 0.081 0.476

Notes: The dependent variable is the total number of turbines in a county in year t. The
independent variable is a binary variable indicating whether a county is CREZ or not.
Full Sample is a balanced panel of 253 Texas counties from 2012 - 2019. Matched Sample
is a balanced panel of 13 treated (CREZ) and 30 control (non-CREZ) counties from 2012

- 2019 obtained using CEM. The independent variable is a binary variable indicating
whether a county sited a substation for CREZ lines. Specification in Columns (2) and (4)
include cubic polynomial of time trend and controls for wind quality, land price, terrain
ruggedness, county level regulation, and demographics. Wind controls include site spe-
cific wind turbine class, capacity factor, and cubic polynomial of wind speed. Land price
controls include average wind project cost, real land price, and median land acreage.
Regulatory Controls include FE for PTC and wind ordinance in a county. Demographic
controls include average farm size (acres) in 2007, median household income in 2007,
and average population over 2007 to 2010. I also include group-by-trend fixed effects in
Column (4) to allow for time-varying unobserved factors affecting matching groups. Ro-
bust Standard Errors clustered at the county level reported in parenthesis. Significance:
***p<0.01;**p<0.05;*p< 0.1
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Table G7: Effect of CREZ on size of a wind project

Dependent variable: Average Capacity (MW) of a project

(1) (2) (3) (4)

CREZ 19.64∗∗ 10.62 25.51 29.33

(9.86) (10.04) (19.49) (17.71)

Controls ✓ ✓

Sample Full Full Matching Matching

Mean Dep. Variable 19.990 19.990 16.067 16.067

Observations 2,024 2,024 344 344

R2
0.014 0.200 0.027 0.425

Notes: The dependent variable is the average capacity (MW) of a wind project in a county in
year t. The independent variable is a binary variable indicating whether a county is CREZ or
not. Full Sample is a balanced panel of 253 Texas counties from 2012 - 2019. Matched Sample
is a balanced panel of 13 treated (CREZ) and 30 control (non-CREZ) counties from 2012 -
2019 obtained using CEM. The independent variable is a binary variable indicating whether
a county sited a substation for CREZ lines. Specification in Columns (2) and (4) include
cubic polynomial of time trend and controls for wind quality, land price, terrain ruggedness,
county level regulation, and demographics. Wind controls include site specific wind turbine
class, capacity factor, and cubic polynomial of wind speed. Land price controls include
average wind project cost, real land price, and median land acreage. Regulatory Controls
include FE for PTC and wind ordinance in a county. Demographic controls include average
farm size (acres) in 2007, median household income in 2007, and average population over
2007 to 2010. I also include group-by-trend fixed effects in Column (4) to allow for time-
varying unobserved factors affecting matching groups. Robust Standard Errors clustered at
the county level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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G.4 Long-Difference specification

Table G8: Effect of CREZ expansion on wind investment - long difference specification

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ 79.91 42.73 10.01

(67.01) (31.61) (36.88)

Sample Matched Matched Matched

Observations 43 43 43

R2
0.151 0.166 0.092

Notes: This table reports the estimate from Equation 17. The sample is 13 treated
(CREZ) and 30 control (non-CREZ) counties. Each unit of observation is a long differ-
ence between 2019 and 2012. The independent variable is a binary variable indicating
whether a county sited a substation for CREZ lines. All specifications include wind
speed, capacity factor, terrain ruggedness, land price, population, and fixed effects for
site specific wind turbine class and Zone. Robust Standard Errors clustered at the
county level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1

27



G.5 Placebo test using cancelled CREZ counties

Table G9: Results of regressions using cancelled CREZ counties as the treatment group

Dependent variable

Total Nameplate Total Turbines Avg. Capacity

Capacity (MW) of a project (MW)

(1) (2) (3)

CREZ (placebo group) 29.61 20.43 −3.08

(36.43) (16.97) (19.24)

Mean dependent variable 26.95 30.46 13.49

Semi-elasticity (%) 109.8 67.1 −22.8

Controls ✓ ✓ ✓

Zone FE ✓ ✓ ✓

Observations 296 296 296

R2
0.330 0.352 0.276

Notes: This table reports results of placebo test using cancelled CREZ counties as the treatment group
and control counties from matching. All specifications include cubic polynomial of time trend and
controls for wind quality, land price, terrain ruggedness, county level regulation, and demographics.
Wind controls include site specific wind turbine class, capacity factor, and cubic polynomial of wind
speed. Land price controls include average wind project cost, real land price, and median land acreage.
Regulatory Controls include binary indicators for PTC expiration in 2013 and presence of a wind ordi-
nance in a county in period t. Demographic controls include average farm size (acres) in 2007, median
household income in 2007, and average population over 2007 to 2010. I also include ERCOT Load
Zone fixed effects to allow for time-varying unobserved factors within load zones. Robust Standard
Errors clustered at the county level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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